Skip to main content
Log in

Microtextured Cell Culture Platforms: Biomimetic Substrates for the Growth of Cardiac Myocytes and Fibroblasts

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In order to understand the role of tissue adaptation to altered physiological states, a more physiologically and dimensionally relevant in vitro model of cardiac myocyte organization has been developed. This new cell culture system, created by microfabrication technology, provides an environment in which cells can maintain a differentiated in vivo cell phenotype. By creating microtextured geometries of varied dimension, we are able to maximize the perpendicular surface area for myocyte attachment. These platforms provide a biocompatible surface with specific microarchitectures upon which cells exhibit enhanced cellular adhesion due to increased surface area, three-dimensional geometries, and bioacceptable attachment moieties.

These microtextured membranes are created using photolithography and microfabrication techniques. Silicone and polyglycolic/lactic acid interfaces with specified microarchitecture and surface chemistry have been designed, microfabricated, and characterized for this purpose. Advantages of the microtextured membranes include the high degree of reproducibility and the ability to create features on the micron and submicron size scale. Because of the flexibility of substrate material and the ease of creating micron size structures, this technique can be applied to many other physiological and biological systems, particularly for cell physiology and mechanobiology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.N. Bhatia, U.J. Balis, M.L. Yarmush, and M. Toner, Biotech. Prog. 14, 378-387 (1998).

    Google Scholar 

  • D.M. Brunette, J. Cell. Science 69m, 35-45 (1984).

    Google Scholar 

  • M.A. Bucaro, J.M. Calver, A.S. Rudolph, B. Spargo, and R. Kapur, IEEE Conference Transactions 0-7803-3869-3/97, 217-219 (1997).

    Google Scholar 

  • M. Buckley, A.J. Banes, G. Levin, B. Sumpio, M. Sata, R. Jordan, J. Gilbert, G. Link, R. Tran Son Tay, Bone Miner. 4, 225-236 (1988).

    Google Scholar 

  • K.L. Byron, J.L. Puglisi, J.R. Holda, D. Eble, and A.M. Samarel, Am. J. Physiol. 271, C01447-C01456 (1996).

    Google Scholar 

  • C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Biotechnology Prog. 14, 356-363 (1998).

    Google Scholar 

  • E.T. Den Braber, J.E. de Ruijter, H.T. Smits, L.A. Ginsel, A.F. von Recom J.A. Jansen, J. Biomed. Materials Research 29, 511-518 (1995).

    Google Scholar 

  • T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari, Biotechnol Bioeng. 57, 118-120 (1998).

    Google Scholar 

  • P.H. Goldspink, D.B. Thomason, and B. Russell, Am. J. Physiol. 271, H2584-H2590 (1996).

    Google Scholar 

  • A.K. Harris, J. Biomech Engineering 106, 19-24 (1984).

    Google Scholar 

  • Y. Ikada, Biomaterials 15(10), 725-736 (1994).

    Google Scholar 

  • C.D. James, R.C. Davis, M. Meyer, A. Perez, S. Turner, G. Withers, L. Kam, G. Banker, H.G. Craighead, M. Isaacson, J.N. Turner, and W. Shain, IEEE Trans. Biomed. Eng., in Press.

  • A.M. Katz, Physiology of the Heart p639-636. (Raven Press, New York. 1992).

    Google Scholar 

  • J. Meyle, et al., J. Biomed. Materials Research 27, 1553-1557 (1993).

    Google Scholar 

  • A.M. Samarel and G.L. Engelmann, Am. J. Physiol. 261, H1067-H1077 (1991).

    Google Scholar 

  • J.A. Schmidt and A.F. von Recum, Biomaterials 12, 385-389 (1991).

    Google Scholar 

  • D.G. Simpson, L. Terracio, M. Terracio, R.L. Price, D.C. Turner, and T.K. Borg, J. Cell. Physiol. 161(1), 89-105 (1994).

    Google Scholar 

  • H.H. Vandenburgh, S. Swasdison, and P. Karlisch, FASEB J. 5, 2860-2867 (1991).

    Google Scholar 

  • Yeoh and H. Holtzer, Experimental Cell. Research, 104(1), 63-78 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, T.A., Deutsch, J., Motlagh, D. et al. Microtextured Cell Culture Platforms: Biomimetic Substrates for the Growth of Cardiac Myocytes and Fibroblasts. Biomedical Microdevices 2, 123–129 (1999). https://doi.org/10.1023/A:1009997620679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009997620679

Navigation