Skip to main content
Log in

Mn-doped BaTiO3: Electrical Transport Properties in Equilibrium State

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electrical conductivity and thermoelectric power of Mn-doped BaTiO3 (1 mole%) and “undoped” BaTiO3 have been measured as functions of oxygen partial pressure (in the range of 10-16 to 1 atm) and temperatures (in the range of 900 to 1200°C), and compared with each other to differentiate the effect of the Mn-addition. It is found that the isothermal conductivity of Mn-doped BaTiO3 varies with increasing Po2 as σ ∝ \(Po_2^{ - 1/4} \) to ∝ \({\text{Po}}_2^{ - 1/6} \) to ∝ \({\text{Po}}_2^{ + 1/6} \) , unlike previously reported. This behavior is well explained by the shift of the ionization equilibrium, \({\text{Mn}}_{Ti}^x \). The corresponding equilibrium constant, KA, is determined from the Po2 values demarcating those three different Po2 regions as \(K_A /{\text{cm}}^{ - 3} \) =3.19×1022 exp(−1.69 eV/kT). Basic parameters involving carrier density and mobility, and defect structure of Mn-doped BaTiO3 are discussed in comparison with those of undoped BaTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matsuoka, Y. Matsuo, H. Sasaki, and S. Hayagawa, J. Am. Ceram. Soc., 55[2], 108 (1972).

    Google Scholar 

  2. H. Ueoka, Ferroelectrics, 7, 352–53 (1974).

    Google Scholar 

  3. H.-J. Hagemann and H. Ihrig, Phys. Rev. B, 20[9], 3871–3878 (1979).

    Google Scholar 

  4. H. Ihrig, J. Am. Ceram. Soc., 64[10], 617–620 (1981).

    Google Scholar 

  5. T.R.N. Kutty and P. Murugarai, Mater. Lett., 3[5–6], 195–198 (1985).

    Google Scholar 

  6. C.-J. Ting, C.-J. Peng, H.-Y. Lu, and S.-T. Wu, J. Am. Ceram. Soc., 73[20], 329–334 (1990).

    Google Scholar 

  7. S.B. Desu and E.C. Subbarao, pp. 189–206 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics, ed. by L.M. Levinson, Am. Ceram. Soc., (Columbus, Ohio, 1981).

  8. H.J. Hagemann and D. Hennings, J. Am. Ceram. Soc., 64[10], 590–594 (1981).

    Google Scholar 

  9. S. Osawa, A. Furuzawa, and N. Fujikawa, J. Am. Ceram. Soc., 76[5], 1191–1194 (1993).

    Google Scholar 

  10. H.-I. Yoo and J.-H. Hwang, J. Phys. Chem. Solids, 53[7], 973–981 (1992).

    Google Scholar 

  11. S.A. Long and R.N. Blumenthal, J. Am. Ceram. Soc., 54[10], 515–519 (1971).

    Google Scholar 

  12. A.M.J.H. Seuter, Philips Res. Repts. Suppl., 3, 1–81 (1974).

    Google Scholar 

  13. J. Daniels and K.H. Härdtl, Philips Res. Repts., 31, 489–504 (1976).

    Google Scholar 

  14. N.H. Chan and D.M. Smyth, J. Electrochem. Soc., 123[10], 1584–1585 (1976).

    Google Scholar 

  15. N.G. Eror and D.M. Smyth, J. Solid State Chem., 24, 235–244 (1978).

    Google Scholar 

  16. N.H. Chan, R.K. Sharma, and D.M. Smyth, J. Am. Ceram. Soc., 64[9], 556–562 (1981).

    Google Scholar 

  17. J. Daniels, Philips Res. Repts., 31, 505–515 (1976).

    Google Scholar 

  18. N.-H. Chan, R.K. Sharma, and D.M. Smyth, J. Am. Ceram. Soc., 65[3], 167–170 (1982).

    Google Scholar 

  19. Y.H. Han, J.B. Appleby, and D.M. Smyth, J. Am. Ceram. Soc., 70[2], 96–100 (1987).

    Google Scholar 

  20. H. Ikushima and S. Hayakawa, J. Phys. Soc. Japan, 19, 1986 (1964).

    Google Scholar 

  21. H.-I. Yoo and C.-S. Kim, Solid State Ionics, 53–56, 583–601 (1992); C.-S. Kim and H.-I. Yoo, J. Electrochem. Soc., 143 [9], 2863–2870 (1996).

    Google Scholar 

  22. J.H. Becker and H.P.R. Frederikse, J. Appl. Phys., 33[1], 447–453 (1962).

    Google Scholar 

  23. J. Nowotny and M. Rekas, Ceram. International, 20, 225–235 (1994).

    Google Scholar 

  24. E. Duverger, B. Jannot, M. Maglione, and M. Jannin, Solid State Ionics, 73, 139–145 (1994).

    Google Scholar 

  25. M. DiDomenico, Jr. and S.H. Wemple, Phys. Rev., 166[2], 565–576 (1968).

    Google Scholar 

  26. M. Cardona, Phys. Rev., 140[2A], 651–655 (1965).

    Google Scholar 

  27. W.S. Baer, J. Phys. Chem. Solid., 28, 677–687 (1967).

    Google Scholar 

  28. G.V. Lewis and C.R.A. Catlow, J. Phys. Chem. Solids, 47[1], 89–97 (1986).

    Google Scholar 

  29. E.K. Chang, A. Mehta, and D.M. Smyth, pp. 35–45 in Proc. the Symposium on Electro-Ceramics, and Solid State Ionics, H.L. Tuller and D.M. Smyth, eds., (The Electrochem. Soc., Inc., NJ, 1988).

    Google Scholar 

  30. G.H. Jonker, Philips Res. Repts., 23, 131–138 (1968).

    Google Scholar 

  31. C. Wagner, Progr. Solid State Chem., 7, 1–37 (1972).

    Google Scholar 

  32. H. Ihrig, J. Phys. C, 9, 3469–3474 (1976).

    Google Scholar 

  33. H. Ihrig and D. Hennings, Phys. Rev. B, 17[12], 4593–4599 (1978).

    Google Scholar 

  34. J.P. Boyeaux and F.M. Michel-Calendini, J. Phys. C, 12, 545–556 (1979).

    Google Scholar 

  35. E. Iguchi, N. Kuboto, T. Nakamori, N. Yamamoto, and K.J. Lee, Phys. Rev. B, 43[10], 8646–8649 (1991).

    Google Scholar 

  36. J. Nowotny and M. Rekas, Ceram. International, 20, 257-263 (1994).

    Google Scholar 

  37. H. Schmalzried, Progr. Solid State Chem., 2, 265–303 (1965).

    Google Scholar 

  38. N. Nowotny and M. Rekas, Solid State Ionics, 49, 135–154 (1991).

    Google Scholar 

  39. G.V. Lewis and C.R.A. Catlow, Radiat. Eff., 73[1–4], 307–314 (1983).

    Google Scholar 

  40. J.F. Baumard and P. Abelard, Solid State Ionics, 12, 47–51 (1984).

    Google Scholar 

  41. I. Burn, J. Mat. Sci., 14, 2453–58 (1979).

    Google Scholar 

  42. K.H. Härdtl and R. Wernicke, Solid State Comm., 10, 153–157 (1972).

    Google Scholar 

  43. R.M. Waser, J. Am. Ceram. Soc., 72[12], 2234–2240 (1989).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, CR., Yoo, HI. & Kim, JY. Mn-doped BaTiO3: Electrical Transport Properties in Equilibrium State. Journal of Electroceramics 1, 27–39 (1997). https://doi.org/10.1023/A:1009994230779

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009994230779

Navigation