Skip to main content
Log in

Origin of enhanced dielectric and multiferroic properties in Pb-doped BaTiO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ferroelectric and ferromagnetic properties of bare BaTiO3 are weaker than the PbTiO3, which limits its magnetoelectric applications. To overcome these problems, a small amount of Pb was doped in BaTiO3 via a solid-state reaction route to improve the multiferroic properties of the compound. In this way, the modified single-phase Ba1-xPbxTiO3 (0 ≤ x ≤ 0.075) samples have demonstrated improved characteristics and desirable application in the area of microwave tunable devices and multi-layered ceramics capacitors. Rietveld refinement technique ensures that the samples retain their parent perovskite tetragonal phase in P4mm space group. The presence of the metal oxide and several bands were finalized through the Fourier transform infrared (FTIR) spectroscopy study. The elemental composition and the oxygen vacancies were confirmed by the X-ray photoelectron spectroscopy (XPS) studies suggesting two valence states, i.e., Ti3+ and Ti4+ of titanium, in both undoped and doped samples. In addition, XPS spectra also confirm that the Pb-doped BaTiO3 samples are less defective than the undoped ones. The Raman spectra reveal the distorted tetragonal perovskite structure of the samples in the P4mm space group by confirming the four fundamental Raman modes. The dielectric studies in the frequency range of 50 Hz to 5 MHz at room temperature reveal an increase in dielectric constant on Pb doping at the Ba site. The dielectric data analyzed in the framework of the universal dielectric response (UDR) model exhibit no deviation from linear behavior. The a.c. conductivity is found to enhance with the increase in Pb content due to the small polaron hopping conduction mechanism between the Pb and Ba ions. The field-dependent magnetization suggests the diamagnetic nature of the undoped BaTiO3 sample and feeble ferromagnetism in the doped samples. Ferroelectric hysteresis loops reveal linearly raised polarization parameters on Pb content. The existence of both ferromagnetic and ferroelectric phenomena confirms the multiferroic nature of Pb doped BaTiO3 system at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that supports the findings of this study are made available from the corresponding author upon reasonable request.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  ADS  Google Scholar 

  2. S.W. Cheong, M. Mostovoy, Multiferroics : a magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007). https://doi.org/10.1038/nmat1804

    Article  ADS  Google Scholar 

  3. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B. 104, 6694–6709 (2000). https://doi.org/10.1021/jp000114x

    Article  Google Scholar 

  4. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nanosci. Technol. 3, 20–28 (2009). https://doi.org/10.1142/9789814287005_0003

    Article  Google Scholar 

  5. N.A. Spaldin, S.W. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38–43 (2010). https://doi.org/10.1063/1.3502547

    Article  Google Scholar 

  6. T. Phan, P. Zhang, D. Grinting, S.C. Yu, N.X. Nghia, Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics. J. Appl. Phys. 112, 013909–013916 (2012). https://doi.org/10.1063/1.4733691

    Article  ADS  Google Scholar 

  7. D. Khomskii, Classifying multiferroics: mechanisms and effects. Physics (2009). https://doi.org/10.1103/physics.2.20

    Article  Google Scholar 

  8. K. Song, N. Ma, Y.K. Mishra, R. Adelung, Y. Yang, Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV Light detection. Adv. Electron. Mater. 5, 1–8 (2019). https://doi.org/10.1002/aelm.201800413

    Article  Google Scholar 

  9. M.R. Panigrahi, S. Panigrahi, Synthesis and microstructure of Ca-doped BaTiO3 ceramics prepared by high-energy ball-milling. Phys. B Condens. Matter. 404, 4267–4272 (2009). https://doi.org/10.1016/j.physb.2009.08.012

    Article  ADS  Google Scholar 

  10. C. Laulhé, F. Hippert, J. Kreisel, M. Maglione, A. Simon, J.L. Hazemann, V. Nassif, EXAFS study of lead-free relaxor ferroelectric BaTi1-x Zrx O3 at the Zr K edge. Phys. Rev. B Phys. Rev. B 74, 014106 (2006). https://doi.org/10.1103/PhysRevB.74.014106

    Article  ADS  Google Scholar 

  11. A.K. Kalyani, K. Brajesh, A. Senyshyn, R. Ranjan, Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3. Appl. Phys. Lett. 104, 252906–252915 (2014). https://doi.org/10.1063/1.4885516

    Article  ADS  Google Scholar 

  12. H. Tian, D. Wang, J. Qi, Y. Wang, H. Chan, C. Choy, Synthesis of BaZr0.75Hf0.25O3 by a solid-state reaction technique and characterizations of dielectric properties. J. Alloy Comp. 402, 251–255 (2005). https://doi.org/10.1016/j.jallcom.2005.04.140

    Article  Google Scholar 

  13. W. Xie, P. Li, Q. Zhu, Y. Wang, Y. Zhang, Y. Cai, S. Xu, J. Zhang, Structural origins, tunable photoluminescence governed by impurities and white-light irradiation in transparent Pr3+: BaTiO3 glass-ceramics. CrystEngComm 21, 3613–3618 (2019). https://doi.org/10.1039/c9ce00373h

    Article  Google Scholar 

  14. Q. Sun, Q. Gu, K. Zhu, J. Wang, J. Qiu, Stabilized temperature-dependent dielectric properties of Dy-doped BaTiO3 ceramics derived from sol-hydrothermally synthesized nanopowders. Ceram. Int. 42, 3170–3176 (2016). https://doi.org/10.1016/j.ceramint.2015.10.107

    Article  Google Scholar 

  15. S.K. Jo, J.S. Park, Y.H. Han, Effects of multi-doping of rare-earth oxides on the microstructure and dielectric properties of BaTiO3. J. Alloys Compd. 501, 259–264 (2010). https://doi.org/10.1016/j.jallcom.2010.04.085

    Article  Google Scholar 

  16. I.C. Amaechi, G. Kolhatkar, A.H. Youssef, D. Rawach, S. Sun, A. Ruediger, B-site modified photoferroic Cr3+-doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Adv. 9, 20806–20817 (2019). https://doi.org/10.1039/c9ra03439k

    Article  ADS  Google Scholar 

  17. Y. Kuroiwa, S. Aoyagi, A. Sawada, Evidence for Pb-O covalency in tetragonal PbTiO3. Phys. Rev. Lett. 87, 217601–217604 (2001). https://doi.org/10.1103/PhysRevLett.87.217601

    Article  ADS  Google Scholar 

  18. B. Noheda, D.E. Cox, G. Shirane, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B 63, 014103 (2000). https://doi.org/10.1103/PhysRevB.63.014103

    Article  ADS  Google Scholar 

  19. L.-F. Zhu, B.-P. Zhang, L. Zhao, J.-F. Li, High piezoelectricity of BaTiO3–CaTiO3–BaSnO3 lead-free ceramics. J. Mater. Chem. C 2, 4764–4771 (2014). https://doi.org/10.1039/c4tc00155a

    Article  Google Scholar 

  20. P. Scherrer, Göttinger Nachrichten Gesell. 2, 98 (1918)

  21. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  Google Scholar 

  22. R. Amin, N. Khatun, S. Sen, Optimization of Pb content in enhancing ferroelectricity and shifting the Tc of BaTiO3 to a higher temperature. J. Appl. Phys. 126, 174105–174110 (2019). https://doi.org/10.1063/1.5116651

    Article  ADS  Google Scholar 

  23. A. Rached, M.A. Wederni, K. Khirouni, S. Alaya, R.J. Martín-palma, J. Dhahri, Structural optical and electrical properties of barium titanate. Mater. Chem. Phys. 267, 124600–124611 (2021). https://doi.org/10.1016/j.matchemphys.2021.124600

    Article  Google Scholar 

  24. S. Kumar, V. Luthra, Raman and infrared spectroscopic investigation of the effects of yttrium and tin co-doping in barium titanate. J. Phys. Chem. Solids. 154, 110079–110088 (2021). https://doi.org/10.1016/j.jpcs.2021.110079

    Article  Google Scholar 

  25. M. Arshad, M. Abushad, S. Husain, W. Khan, Investigation of structural, optical and electrical transport properties of yttrium doped La0.7Ca0.3MnO3. Electron. Mater. Lett. 16, 321–331 (2020). https://doi.org/10.1007/s13391-020-00216-1

    Article  ADS  Google Scholar 

  26. S.R. Yousefi, O. Ameri, M.S. Niaseri, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrson. Sonochem. 58, 104619–104714 (2019). https://doi.org/10.1016/j.ultsonch.2017.05.025

    Article  Google Scholar 

  27. M.G. Aerani, M.S. Niaseri, S. Naseh, Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization. Ultrson. Sonochem. 39, 494–503 (2017). https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  Google Scholar 

  28. R.W.M. Kwok, XPS Peak Fitting Program for WIN95/98 XPSPEAK Version 4.1. (2000), http://www.phy.cuhk.edu.hk/~surface/XPSPEAK/

  29. L. Mi, Q. Zhang, H. Wang, Z. Wu, Y. Guo, Y. Li, X. Xiong, K. Liu, W. Fu, Y. Ma, B.Z. Wang, X.W. Qi, Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram. Int. 46, 10619–10633 (2020). https://doi.org/10.1016/j.ceramint.2020.01.066

    Article  Google Scholar 

  30. F. Davar, M.S. Niasiri, Z. Fereshteh, Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J. Alloys Compd. 496, 638–643 (2010). https://doi.org/10.1016/j.jallcom.2010.02.152

    Article  Google Scholar 

  31. V.V. Burungale, R.S. Devan, S.A. Pawar, N.S. Harale, V.L. Patil, V.K. Rao, Y.R. Ma, J.E. Ae, J.H. Kim, P.S. Patil, Chemically synthesized PbS nanoparticulate thin films for a rapid NO2 gas sensor. Mater. Sci. Pol. 34, 204–211 (2016). https://doi.org/10.1515/msp-2016-0001

    Article  ADS  Google Scholar 

  32. D. Ehre, H. Cohen, V. Lyahovitskaya, I. Lubomirsky, X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3. Phys. Rev. B 77, 184106 (2008). https://doi.org/10.1103/PhysRevB.77.184106

    Article  ADS  Google Scholar 

  33. L. Zhou, Y. Zhang, S. Li, Q. Lian, J. Yang, W. Bai, X. Tang, Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline ­ BaTi1-xFexO3 ceramics. J Mater. Sci. Mater. Electron. 31, 14487–14493 (2020). https://doi.org/10.1007/s10854-020-04008-z

    Article  Google Scholar 

  34. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M.S. Niasiri, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Moliq. 337, 116405–116410 (2021). https://doi.org/10.1016/j.moliq.2021.116405

    Article  Google Scholar 

  35. C.H. Perry, D.B. Hall, Temperature dependence of the Raman spectrum of BaTiO3. Phys. Rev. Lett. 15, 700–702 (1965). https://doi.org/10.1103/PhysRevLett.15.700

    Article  ADS  Google Scholar 

  36. J. Shah, R.K. Kotnala, Induced magnetism and magnetoelectric coupling in ferroelectric BaTiO3 by Cr-doping synthesized by a facile chemical route. J. Mater. Chem. A (2013). https://doi.org/10.1039/c3ta11845b

    Article  Google Scholar 

  37. R. Asiaie, W. Zhu, S.A. Akbar, P.K. Dutta, Characterization of submicron particles of tetragonal BaTiO3. Chem. Mater. 8, 226–234 (1996). https://doi.org/10.1021/cm950327c

    Article  Google Scholar 

  38. M. DiDomenico, S.H. Wemple, S.P.S. Porto, R.P. Bauman, Raman spectrum of single-domain BaTiO3. Phys. Rev. B 174, 522–530 (1968). https://doi.org/10.1103/PhysRev.174.522

    Article  ADS  Google Scholar 

  39. A. Jain, R. Saroha, M. Pastor, A.K. Jha, A.K. Panwar, Effect of sintering duration on structural and electrical properties of Ba0.9Sr0.1Ti0.96Zr0.04O3. Curr. Appl. Phys. 16, S37–S62 (2016). https://doi.org/10.1016/j.cap.2016.04.022

    Article  Google Scholar 

  40. A. Jain, A.K. Panwar, Synergetic effect of rare-earths doping on the microstructural and electrical properties of Sr and Ca co-doped BaTiO3 nanoparticles. Ceram. Int. 46, 10270–10278 (2020). https://doi.org/10.1016/j.ceramint.2020.01.020

    Article  Google Scholar 

  41. M. Iwamoto, Maxwell—Wagner effect, in Encyclopedia of nanotechnology. ed. by B. Bhushan (Dordrecht, Springer, 2015), pp.1–13. https://doi.org/10.1007/978-94-007-6178-0

    Chapter  Google Scholar 

  42. M.S. Alkathy, A. Hezam, K.S.D. Manoja, J. Wang, C. Cheng, K. Byrappa, K.C.J. Raju, Effect of sintering temperature on structural, electrical, and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics. J. Alloys Compd. 762, 49–61 (2018). https://doi.org/10.1016/j.jallcom.2018.05.138

    Article  Google Scholar 

  43. M. Arshad, W. Khan, M. Abushad, M. Nadeem, S. Husain, A. Ansari, V.K. Chakradhary, Correlation between structure, dielectric and multiferroic properties of lead free Ni modified BaTiO3solid solution. Ceram. Int. 46, 27336–27351 (2020). https://doi.org/10.1016/j.ceramint.2020.07.219

    Article  Google Scholar 

  44. K. Omri, S. Gouadaria, Dielectric investigation and effect of low copper doping on optical and morphology properties of ZO–Cu nanoparticles. J. Mater. Sci. Mater. Electron. 32, 17021–17031 (2021). https://doi.org/10.1007/s10854-021-06268

    Article  Google Scholar 

  45. S. Butte, K.R. Kambale, A. Ghorphade, A. Halikar, R. Gaikwad, H. Panda, Significant improvement in Curie temperature and piezoelectric properties of BaTiO3 with minimum Pb addition. J. Asian Ceram. Soc. 7, 407–416 (2019). https://doi.org/10.1080/21870764.2019

    Article  Google Scholar 

  46. N. Sareecha, W.A. Shah, A. Maqsood, M.A. Rehman, M.L. Mirza, Fabrication and electrical investigations of Pb-doped BaTiO3 ceramics. Mater. Chem. Phys. 193, 42–49 (2017). https://doi.org/10.1016/j.matchemphys.2017.124600

    Article  Google Scholar 

  47. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  ADS  Google Scholar 

  48. A. Ahad, M.A. Taher, M.K. Das, M.Z. Rahman, M.N.I. Khan, Effect of Y substitution on magnetic and transport properties of Ba0.95La0.05Ti1−xYxO3 ceramics. Results Phys. 12, 1925–1932 (2019). https://doi.org/10.1016/j.rinp.2019.01.072

    Article  ADS  Google Scholar 

  49. T. Sareein, P. Baipaywad, W. Chaiammad, S. Annanta, X. Tan, R. Yimnirun, Dielectric aging behaviour of A-site hybrid-doped BaTiO3 ceramics. Curr. Appl. Phys. 11, S90–S94 (2011). https://doi.org/10.1016/j.cap.2011.03.018

    Article  Google Scholar 

  50. A.K. Jonscher, The ‘Universal’ dielectric response. Nature 267, 673–679 (1977). https://doi.org/10.1038/267673a0

    Article  ADS  Google Scholar 

  51. K. Omri, I. Najeh, L.E. Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 89490–89848 (2016). https://doi.org/10.1016/j.ceramint.2016.02.151

    Article  Google Scholar 

  52. S. Layek, H.C. Verma, Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by a novel citrate combustion method. Adv. Mater. Lett. 3, 533–538 (2012). https://doi.org/10.5185/amlett.2012.icnano.242

    Article  Google Scholar 

  53. S. Manzoor, S. Husain, Influence of Zn doping on structural, optical and dielectric properties of LaFeO3. Mater. Res. Express 5, 055009–055012 (2018)

    Article  ADS  Google Scholar 

  54. M. Nadeem, W. Khan, S. Khan, S. Husain, A. Ansari, Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping. J. Appl. Phys. 124, 164105–164109 (2018). https://doi.org/10.1063/1.5050946

    Article  ADS  Google Scholar 

  55. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B - Condens. Mater. Phys. 70, 1–8 (2004). https://doi.org/10.1103/PhysRevB.70.024107

    Article  Google Scholar 

  56. K. Keizer, A.J. Burggr, Grain size effects on the ferroelectric-paraelectric transition, the dielectric constant, and the lattice parameters in lanthana-substituted lead titanate. Phys. Stat. Sol. (a) 26, 561–569 (1974). https://doi.org/10.1002/pssa.2210260220

    Article  ADS  Google Scholar 

  57. V. Shuvaeva, Y. Azuma, K. Yagi, H. Terauchi, R. Vedrinski, V. Komarov, H. Kasatani, Ti off-center displacements in Ba1-xSrxTiO3 studies by EXAFS. Phys. Rev. B 62, 2969–2972 (2000). https://doi.org/10.1103/PhysRevB.62.2969

    Article  ADS  Google Scholar 

  58. M. Arshad, W. Khan, P. Rajput, M. Kumar, M. Abushad, S. Hussain, Synchrotron based x-ray absorption spectroscopy investigation and temperature dependent ferroelectric properties of Ni doped BaTiO3 nanostructures. Ceram. Int. 48, 14156–14165 (2022). https://doi.org/10.1016/j.ceramint.2022.01.302

    Article  Google Scholar 

  59. N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.L. Phan, Structural, optical and magnetic properties of polycrystalline BaTi1-xFexO3 ceramics. J. Appl. Phys. 110, 043914–043917 (2011). https://doi.org/10.1063/1.3625235

    Article  ADS  Google Scholar 

  60. S.K. Das, R.N. Mishra, B.K. Roul, Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun. 191, 19–24 (2014). https://doi.org/10.1016/j.ssc.2014.04.001

    Article  ADS  Google Scholar 

  61. G.Z. Xing, Y.H. Lu, Y.F. Tian, J.B. Yi, C.C. Lim, Y.F. Li, G.P. Li, D.D. Wang, B. Yao, J. Ding, Y.P. Feng, T. Wu, Defect-induced magnetism in undoped wide band gap oxides: zinc vacancies in ZnO as an example. AIP Adv. (2011). https://doi.org/10.1063/1.3609964

    Article  Google Scholar 

  62. S. Duhalde, M.F. Vignolo, F. Golmar, C. Chiliotte, C.E.R. Torres, L.A. Errico, A.F. Cabrera, M. Rentería, F.H. Sánchez, M. Weissmann, Appearance of room-temperature ferromagnetism in Cu-doped TiO2-δ films. Phys. Rev. B 72, 20–23 (2005). https://doi.org/10.1103/PhysRevB.72.161313

    Article  Google Scholar 

Download references

Acknowledgements

The authors are also thankful to Professor Shakeel Khan, Department of Applied Physics, AMU, Aligarh for providing the FTIR and dielectric measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wasi Khan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M., Abushad, M., Azhar, M. et al. Origin of enhanced dielectric and multiferroic properties in Pb-doped BaTiO3 ceramics. Appl. Phys. A 128, 1123 (2022). https://doi.org/10.1007/s00339-022-06239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06239-9

Keywords

Navigation