Skip to main content
Log in

Dielectric Properties of La3+ Doped Sr0.3–3y/2Lay Ba0.7Nb2O6 Ceramics Prepared under Different Sintering Conditions*

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

A study of the dielectric properties of the Lanthanum doped Sr0.3Ba0.7Nb2O6 (SBN30) ceramic according to the stoichiometric formulation Sr0.3–3y/2LayBa0.7Nb2O6 with y = 0.01, 0.03 and 0.05, and the influence of the sintering conditions is reported. The XRD shows single phase compounds for Sr0.285La0.01Ba0.7Nb2O6 (LSBN1) and Sr0.225La0.03Ba0.7Nb2O6 (LSBN3) ceramics, both samples having similar microstructure, densification and dielectric properties. The density increases linearly with ln t, where t is the sintering time, and the values of the maximum ferroelectric peaks of the permittivity increase steadily with t. Using the Bruggeman model to estimate the theoretical permittivity, it is concluded that the magnitude of the experimental permittivity peaks are mainly affected by the volume fraction of porosity of the samples. In this study we also establish that pore diffusion mechanisms behave according to the Ginstling-Brownshtein equation. For the Sr0.225La0.05Ba0.7Nb2O6 (LSBN5) sample, XRD analysis reveals the presence of isostructural compounds of the intermediate phases BaNb2O6 and SrNb2O6, and the dielectric properties start to deteriorate. This fact indicates the existence of a solubility limit of Lanthanum ions in the SBN solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Claredon Press, Oxford, 1977).

    Google Scholar 

  2. A.M. Glass, J. Appl. Phys., 40, 4699–4713 (1969).

    Google Scholar 

  3. Y. Xu, Ferroelectric Materials and Their Applications (Elsevier Science Publisher B.V., New York, 1991).

    Google Scholar 

  4. A.M. Glass, Appl. Phys. Let., 13, 147–149 (1968).

    Google Scholar 

  5. S.T. Liu and R.B. Maciolek, J. Electr. Mater., 4, 91–100 (1975).

    Google Scholar 

  6. D.J. Mosse, et. al., Proc. IEEE, 59(11), 1628–1629 (1971).

    Google Scholar 

  7. K.K. Deb, Materials for Smart Systems Symposium, Boston, MA, USA, 127–135 (1994).

  8. P. Leiding, M. Villegas, C. Moure, and J.J. Fernández, Proceedings of the Conference on Electronic Ceramics and Applications, Electroceramic V, Ed. Department of Ceramic Engineering, University of Aveiro, Portugal, Book-1, 251–254 (1996).

    Google Scholar 

  9. M. Ohno and K. Takagi, Appl. Phys. Let., 64(13), 1620–1622 (1964).

    Google Scholar 

  10. D.J. Jendritza, P. Stephan, and H. Janocha, Proceeding of the Conference on Electronic Ceramics and Applications, Electroceramic V, Ed. Department of Ceramic Enginnering, University of Aveiro, Portugal, Book-1, 133–136 (1996).

    Google Scholar 

  11. X.H. Wan, J.B. Zou, X.Z. Wang, and X.L. Zhang, Proceeding of the Conference on Electronic Ceramics and Applications, Electroceramic V, Ed. Department of Ceramic Enginnering, University of Aveiro, Portugal, Book-1, 127–130 (1996).

    Google Scholar 

  12. H. Takenchi, S. Jyomura, and C. Nakuya, Jpn. J. Appl. Phys., 24 Supplement 24–2, 36–40 (1985).

    Google Scholar 

  13. F. Guerrero, J.J. Portelles, I. González, A. Fundora, H. Amorín, J. Siqueiros, and R. Machorro, Solid State Communication, 101(6), 463–466 (1997).

    Google Scholar 

  14. H. Amorín, F. Guerrero, J. Portelles, I. González, A. Fundora, J. Siqueiros, and J. Valenzuela, Solid State Communication, in press (1998).

  15. R.W. Moulson, Fundamentals of the Physics Ceramic (Ed Pergamon Press, New York, 1990).

    Google Scholar 

  16. S.H. Nishiwaki, J. Takahashi, and K. Kodeira, Jpn. J. Appl. Phys., 33, 5477–5481 (1994).

    Google Scholar 

  17. K. Nagata, Y. Yamamoto, H. Igarashi, and K. Okazaki, Ferroelectrics, 38, 853–856 (1981).

    Google Scholar 

  18. T. Tsang, W. Nantiu, and F. Fuhshan, J. Mater. Sci. Lett., 13, 1746–1748 (1994).

    Google Scholar 

  19. R.B. Atkin and R.M. Fulrath, J. Am. Ceram. Soc., 54(5), 265–270 (1971).

    Google Scholar 

  20. Q.Y. Jiang and L.E. Cross, J. Mat. Sci., 28, 4536–4543 (1993).

    Google Scholar 

  21. PC-APD Windows Software for Automated Powder Diffraction, User's Guide, Second Edition, 1994 Copyright© Philips Electronics N.V. 1993.

  22. R.B. Maciolek and S.T. Liu, J. Electr. Mater., 4, 517 (1975).

    Google Scholar 

  23. R.L. Coble, J. Appl. Phys., 32(5), 787–792 (1961).

    Google Scholar 

  24. F. Abad El Salam, A. Tawfik, and A.I. Eatah, Ferroelectrics, 65, 131–141 (1985).

    Google Scholar 

  25. Y. Sato, H. Kanai, and Y. Yamashita, Jpn. J. Appl. Phys., 33, 1380–1384 (1994).

    Google Scholar 

  26. W. Wersing, K. Lubit, and J. Mohaupt, Ferroelectrics, 68, 77 (1986).

    Google Scholar 

  27. F. Amar, J. Bernhoic, B. Sthephan, J. Jellinek, and P.J. Salamon, J. Appl. Phys., 65(8), 3219–3225 (1989).

    Google Scholar 

  28. R.C. MacKenzie, Differential Thermal Analysis (Academic Press, London, 1972).

    Google Scholar 

  29. I.T. Tareev, Física de los Materiales Dieléctricos (Ed Mir, Moscú, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, F., Amori´n, H., Portelles, J.J. et al. Dielectric Properties of La3+ Doped Sr0.3–3y/2Lay Ba0.7Nb2O6 Ceramics Prepared under Different Sintering Conditions*. Journal of Electroceramics 3, 377–385 (1999). https://doi.org/10.1023/A:1009970031479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009970031479

Navigation