Skip to main content

Use of bioassay-based whole effluent toxicity (WET) tests to predict benthic community response to a complex industrial effluent

Abstract

Whole effluent toxicity (WET) tests are a usefulmonitoring tool because they provide a rapid andreplicable measure of the potential ecotoxicologicaleffect of effluents. Although WET tests have beenincorporated into toxicity-based effluent limits toprotect receiving systems from adverse effects, fewstudies have attempted to quantitativelyfield-validate laboratory-derived toxicity thresholds.In this study, we examine the ability of WET tests topredict response thresholds of an invertebratecommunity to a paper mill effluent discharged into theNicolet-SW River, Québec, Canada. We quantifiedinvertebrate community structure and density in theriver and detrended for the effects ofphysical/chemical variables. This allowed examinationof direct correlation between invertebrate communitystructure and effluent concentration. There was asignificant decrease in taxonomic richness at aneffluent concentration of 16%, but significantchanges in the density of invertebrates occurredbetween 0% and 2% effluent. This suggests thatalthough most taxa returned to the river downstream ofthe effluent, they did so at lower densities.Calculated field thresholds were compared tolaboratory thresholds for the effluent using chronicWET tests with algae, cladocerans and fish. The WETtests produced a mean MATC of 3.6%. Thus, standardWET tests overestimated response thresholds of theinvertebrate community in the receiving environmentand impacts were observed in areas where no impact wasexpected.

This is a preview of subscription content, access via your institution.

References

  • Adams, W.J., R.A. Kimerle, B.B. Heidolph & P.R. Michael, 1983. Field comparison of laboratory-derived acute and chronic toxicity data. In: W.E. Bishop, R.D. Cardwell & B.B. Heidolph (eds), Aquatic Toxicity and Hazard Assessment: Sixth Symposium ASTP STM 802. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Ammann, L.P.,W.J. Birge, K.L. Dickson, P.B. Dorn, N.E. LeBlanc, D.I. Mount, B.R. Parkhurst, H.R. Preston, S.C. Schimmel, A. Spacie & G.B. Thursby, 1996. Predicting instream effects from WET tests. In: D.R. Grothe, K.L. Dickson & D.K. Reed-Judkins (eds), Whole Effluent Toxicity Testing: An Evaluation of Methods and Prediction of Receiving System Impacts. Setac Press, Pensacola.

    Google Scholar 

  • Barbour, M.T., D.L. Borton, D.S. Cherry, W.H. Clements, J.M. Diamond, D.R. Grothe, M.A. Lewis, D.K. Reed-Judkins & G.W. Saalfeld, 1996. Field assessments. In: D.R. Grothe, K.L. Dickson & D.K. Reed-Judkins (eds), Whole Effluent Toxicity Testing: An Evaluation of Methods and Prediction of Receiving System Impacts. Setac Press, Pensacola.

    Google Scholar 

  • Beyers, D.W., M.S. Farmer & P.J. Sikoski, 1995. Effects of rangeland aerial application of Sevin-4-oil on fish and aquatic invertebrate drift in the Little Missouri river, North Dakota. Arch. Envir. Contam. Toxicol. 28: 27–34.

    Google Scholar 

  • Birge, W.J., J.A. Black & T.M. Short, 1989. A comparative ecological and toxicological investigation of a secondary wastewater treatment plant effluent and its receiving stream. Environ. Toxicol. Chem. 8: 437–450.

    Google Scholar 

  • Bournaud, M., B. Cellot, P. Richoux & A. Berrahou, 1996. Macroinvertebrate community structure and environmental characteristics along a large river: Congruity for patterns of identification to species or family. J. N. Am. Benthol. Soc. 15(2): 232–253.

    Google Scholar 

  • Cairns, J. Jr., 1983. Are single species toxicity tests alone adequate for estimating environmental hazard? Hydrobiologia 100: 47–57.

    Google Scholar 

  • Cairns, J. Jr., 1986. The myth of the most sensitive species. BioScience 36: 670–672.

    Google Scholar 

  • Cairns, J., Jr., 1993. Environmental science and resource management in the 21st century: Scientific perspective. Environ. Toxicol. Chem. 12: 1321–1329.

    Google Scholar 

  • Chapman, P.M., 1995. Extrapolating laboratory toxicity tests to the field. Environ. Toxicol. Chem. 14: 927–930.

    Google Scholar 

  • Clements, W.H. & P.M. Kiffney, 1996. Validation of whole effluent toxicity tests: Integrated studies using field assessments, microcosms, and mesocosms. In: D.R. Grothe, K.L. Dickson & D.K. Reed-Judkins (eds), Whole Effluent Toxicity Testing: An Evaluation of Methods and Prediction of Receiving System Impacts. Setac Press, Pensacola.

    Google Scholar 

  • Costan, G., N. Bermingham, C. Blaise & J.F. Ferard, 1993. Potential Ecotoxic Effects Probe (PEEP): A novel index to assess and compare the toxic potential of industrial effluents. Environ. Toxicol. Wat. Qual. 8: 115–140.

    Google Scholar 

  • Crane, M., I. Johnson & L. Maltby, 1986. In Situ Assays for Monitoring the Toxic Impacts of Waste in Rivers. Royal Soc. Chem. 193: 116–124.

    Google Scholar 

  • Crossland, N.O. & G.C. Mitchell, 1992. Use of outdoor artificial streams to determine threshold toxicity concentrations for a petrochemical effluent. Environ. Toxicol. Chem. 11: 49–59.

    Google Scholar 

  • DeLonay, A.J., E.E. Little, J. Lipton, D.F. Woodward & J.A. Hansen, 1996. Behavioral avoidance as evidence of injury to fishery resources: Applications to natural resource damage assessment. In: T. Lapoint, F.T. Price & E.E. Little (eds), Environmental Toxicology and Risk Assessment. Volume 4. ASTM STP 1262. America Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Dickson, K.L., W.T. Waller, J.H. Kennedy & L.P. Ammann, 1992. Assessing the relationship between ambient toxicity and instream biological response. Environ. Toxicol. Chem. 11: 1307–1322.

    Google Scholar 

  • Eagleson, K.W., D.L. Lenat, L.W. Ausley & F.B. Winborne, 1990. Comparison of measured instream biological responses with responses predicted using the Ceriodaphnia dubia chronic toxicity test. Environ. Toxicol. Chem. 9: 1019–1028.

    Google Scholar 

  • Environment Canada, 1992a. Pulp and paper effluent regulations. Canada Gazette, Part II, 126, 1967–1997.

    Google Scholar 

  • Environment Canada, 1992b. Biological test method. Growth inhibition test using the freshwater alga Selanastrum capricornutum. Report EPS 1/RM/25. Environment Canada, Ottawa.

    Google Scholar 

  • Environment Canada, 1992c. Biological test method. Reproduction and survival assay using the cladoceran Ceriodaphnia dubia. Report EPS 1/RM/21. Environment Canada, Ottawa.

    Google Scholar 

  • Environment Canada, 1992d. Test of larval growth and survival using fathead minnows (Pimephales promelas). Report EPS 1/RM/22. Environment Canada, Ottawa.

    Google Scholar 

  • Folmar, L.C., 1976. Overt avoidance reaction of rainbow trout fry to nine herbicides. Bull. Environ. Contam. Toxicol. 15: 509–514.

    Google Scholar 

  • Geckler, J.R., W.B. Horning, T.M. Neiheisel, Q.H. Pickering, E.L. Robinson & C.E. Stephan, 1976. Validation of laboratory tests for predicting toxicity of copper in streams. Ecological Research Series, EPA-600/3-76-116. U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Giesy, J.P. & R.L. Graney, 1989. Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators. Hydrobiologia 188/189: 21–60.

    Google Scholar 

  • Gillespie, W.B., Jr., J.H. Rodgers Jr. & N.O. Crossland, 1996. Effects of a nonionic surfactant (C14-15AE-7) on aquatic invertebrates in outdoor stream mesocosms. Environ. Toxicol. Chem. 15: 1418–1422.

    Google Scholar 

  • Hall, R.J., G.E. Likens, S.B. Fiance & G.R. Hendrey, 1980. Experimental acidification of a stream in the Hubbard Brook Experimental Forest, New Hampshire. Ecology 61(4): 976–989.

    Google Scholar 

  • Heber, M.A., D.K. Reed-Judkins & T.T. Davies, 1996. USEPA’s whole effluent toxicity testing program: a national regulatory perspective. In: D.R. Grothe, K.L. Dickson & D.K. Reed-Judkins (eds), Whole Effluent Toxicity Testing: An Evaluation of Methods and Prediction of Receiving System Impacts. Setac Press, Pensacola.

    Google Scholar 

  • Hermanutz, R.O., K.N. Allen, T.H. Roush & S.F. Hedtke, 1992. Effects of elevated selenium concentrations on bluegills (Lepomis macrochirus) in outdoor experimental streams. Environ. Toxicol. Chem. 11: 217–224.

    Google Scholar 

  • Hilsenhoff, W.L., 1991. Diversity and classification of insects and collembola. In: J.H. Thorp & A.P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc., Toronto.

    Google Scholar 

  • Hocutt, C.H., 1975. Assessment of a stressed macroinvertebrate community. Wat. Res. Bull. 11: 820–835.

    Google Scholar 

  • Horning, W.B. & C.I. Weber, 1985. Methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA-660/3-84-080. U.S. Environmental Protection Agency, Cincinnati.

    Google Scholar 

  • Kimball, K.D. & S.A. Levin, 1985. Limitations of laboratory bioassays: the need for ecosystem-level testing. BioScience 35(3): 165–171.

    Google Scholar 

  • Kleerekoper, H., 1976. Effects of sublethal concentrations of pollutants on behavior of fish. J. Fish Res. Board Can. 33: 2036–2039.

    Google Scholar 

  • Kooijman, S.A.L.M., 1987. A safety factor for LC50 values allowing for differences in sensitivity among species. Wat. Res. 21(3): 269–276.

    Google Scholar 

  • Larimore, R.W., 1974. Stream drift as an indicator of water quality. Trans. Am. Fish. Soc. 103: 507–517.

    Google Scholar 

  • Lenat, D.R., 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Am. Benthol. Soc. 7: 222–233.

    Google Scholar 

  • Little, E.E., J.J. Fairchild & A.J. DeLonay, 1993. Behavioral methods for assessing impacts of contaminants on early life stage fishes. Water Quality and the Early Life Stages of Fishes, American Fisheries Society Symposium 14: 67–76.

    Google Scholar 

  • Little, E.E., R.D. Archeski, B.A. Flerov & V.I. Koslovskaya, 1985. Behavioral indicators of sublethal toxicity in rainbow trout. Arch. Environ. Contam. Toxicol. 19: 380–385.

    Google Scholar 

  • Lonergan, S.P. & J.B. Rasmussen, 1996. A multi-taxonomic indicator of acidification: Isolating the effects of pH from other water-chemistry variables. Can. J. Fish. Aquat. Sci. 53: 1778–1787.

    Google Scholar 

  • Mackey, A.P. & M. Hodgkinson, 1996. Assessment of the impact of Naphthalene contamination on mangrove fauna using behavioral assays. Bull. Environ. Contam. Toxicol. 56: 279–286.

    Google Scholar 

  • Maltby, L. & P. Calow, 1989. The application of bioassays in the resolution of environmental problems: past, present and future. Hydrobiologia 188/189: 65–76.

    Google Scholar 

  • Marcus, M.D. & L.L. McDonald, 1992. Evaluating the statistical bases for relating receiving water impacts to effluent and ambient toxicities. Environ. Toxicol. Chem. 11: 1389–1402.

    Google Scholar 

  • Mount, D.I. & T.J. Norberg-King (eds.), 1985. Validity of effluent and ambient toxicity tests for predicting biological impact, Scippo Creek, Circleville, Ohio. EPA/600/3-85-044. U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Mount, D.I. & T.J. Norberg-King (eds), 1986. Validity of effluent and ambient toxicity tests for predicting biological impact, Kanawha River, Charleston, West Virginia. EPA/600-3-86-006. U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Mount, D.I., T.J. Norberg-King & A.E. Sheen, 1986a. Validity of effluent and ambient toxicity tests for predicting biological impact, Naugatuck River, Waterbury, Connecticut. EPA/600/8-86-005. U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Mount, D.I., A.E. Sheen & T.J. Norberg-King, 1986b. Validity of effluent and ambient toxicity tests for predicting biological impact, Back River, Baltimore Harbor, Maryland. EPA/600/8-86-001. U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Mount, D.I., A.E. Sheen & T.J. Norberg-King, 1986c. Validity of effluent and ambient toxicity tests for predicting biological impact, Ohio River, Wheeling, West Virginia. EPA/600/3-85-071. U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Mount, D.I., A.E. Sheen & T.J. Norberg-King, 1985. Validity of effluent and ambient toxicity testing for predicting biological impact on Five Mile Creek, Birmingham, Alabama. EPA/600/8-85-015. U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Mount, D.I., N.A. Thomas, T.J. Norberg-King, M.T. Barbour, T.H. Roush & W.F. Brandes, 1984. Effluent and ambient toxicity testing and instream community response on the Ottawa River, Lima, Ohio. EPA 600/3-84-080. U.S. Environmental Research Laboratory, Duluth.

    Google Scholar 

  • Norberg-King, T.J. & D.I. Mount (eds), 1986. Validity of effluent and ambient toxicity tests for predicting biological impact, Skeleton Creek, Enid Oklahoma. EPA/600/8-86-002). U.S. Environmental Protection Agency, Duluth.

    Google Scholar 

  • Odum, E.P., 1984. The mesocosm. BioScience 34: 558–562.

    Google Scholar 

  • Patrick, R., M.H. Hohn & J.H. Wallace, 1954. A new method for determining the pattern of the diatom flora. Notulae Naturae of the Academy of Natural Sciences of Philadelphia 259: 1–12.

    Google Scholar 

  • Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross & R.M. Hughes, 1989. Rapid bioassessment protocols for use in streams and rivers. Benthic macroinvertebrates and fish. EPA/444/4-89/001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • Pontasch, K., B.R. Niederlehner & J. Cairns Jr., 1989. Comparisons of single species, microcosm and field responses to a complex effluent. Environ. Toxicol. Chem. 8: 521–532.

    Google Scholar 

  • Rand, G.M., 1985. Behavior. In: G.M. Rand & S.R. Petrocelli (eds), Fundamentals of Aquatic Toxicology. Hemisphere Publishing Corporation, New York.

    Google Scholar 

  • Rand, G.M & S.R. Petrocelli, 1985. Introduction. In: G.M. Rand & S.R. Petrocelli (eds), Fundamentals of Aquatic Toxicology. Hemisphere Publishing Corporation, New York.

    Google Scholar 

  • Ricker, W.E., 1973. Linear regression in fishery research. J. Fish Res. Board Can. 30: 409–434.

    Google Scholar 

  • Robinson, R.D., J.H. Carey, K.R. Solomon, I.R. Smith, M.R. Servos & K.R. Munkittrick, 1994. Survey of receiving water environmental impacts associated with discharges from pulp mills. Environ. Toxicol. Chem. 13: 1075–1088.

    Google Scholar 

  • Robitaille, P., 1994. Qualité des eaux du bassin de la rivière Nicolet, 1979 a 1992. Ministère de l’Environnement et de la Faune du Québec–Direction des Écosystemes Aquatiques.

  • Sandheinrich, M.B. & G.J. Atchinson, 1990. Sublethal toxicant effects on fish foraging behavior: Empirical vs mechanistic approaches. Environ. Toxicol. Chem. 9: 107–119.

    Google Scholar 

  • Saunders, R.L. & J.B. Sprague, 1967. Effects of copper-zinc mining pollution on a spawning migration of Atlantic salmon. Wat. Res. 1: 419–432.

    Google Scholar 

  • Steele, C.W., D.H. Taylor & S. Strickler-Shaw, 1996. Perspectives in avoidance-preference bioassays. In: T.W. LaPoint, F.T. Price & E.E. Little (eds), Environmental Toxicology and Risk Assessment. Volume 4. ASTMSTP 1262. American Society for Testing and Materials.

  • U.S. Environmental Protection Agency, 1984. Development of water-quality based permit limitations for toxic pollutants; national policy. Fed. Reg. 49: 9016–9019.

  • U.S. Environmental Protection Agency, 1991. Technical Support Document For Water Quality-based Toxics Control. EPA/505/2-90-001. Office of Water.

  • Van Straalen, N.M. & C.A.J. Denneman, 1989. Ecotoxicological evaluation of soil quality criteria. Ecotox. Environ. Safety 18: 241–251.

    Google Scholar 

  • Vezeau, R., 1982. Protocoles d’échantillonage, de préservation et de preparation des échantillons pour les analyses des polluants prioritaires. Environment Canada, Conservation and Protection, Québec Region, Montréal, QC.

    Google Scholar 

  • Wallace, J.B., G.J. Lugthart, T.F. Cuffney & G.A. Schurr, 1989. The impact of repeated insecticidal treatments on drift and benthos of a headwater stream. Hydrobiologia 179: 135–147.

    Google Scholar 

  • Waterhouse, J.C. & M.P. Farrell, 1985. Identifying pollution-related changes in chironomid communities as a function of taxonomic rank. Can. J. Fish. Aq. Sci. 42: 406–413.

    Google Scholar 

  • Williams, P.H. & K.J. Gaston, 1994. Measuring more of biodiversity: Can higher-taxon richness predict wholesale species richness? Biol. Conserv. 67: 211–217.

    Google Scholar 

  • Wright, I.A., B.C. Chessman, P.G. Fairweather & L.J. Benson, 1995. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Austral. J. Ecol. 20: 142–149.

    Google Scholar 

  • Zischke, J.A., J.W. Arthur, R.O. Hermanutz, S.F. Hedtke & J.C. Helgen, 1983. Effects of pentachlorophenol on invertebrates and fish in outdoor experimental channels. Aq. Toxicol. 7: 37–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sarakinos, H.C., Rasmussen, J.B. Use of bioassay-based whole effluent toxicity (WET) tests to predict benthic community response to a complex industrial effluent. Journal of Aquatic Ecosystem Stress and Recovery 6, 141–157 (1997). https://doi.org/10.1023/A:1009947824130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009947824130

  • benthic invertebrates
  • community response
  • complex effluent
  • ecotoxicology
  • field validation
  • MATC
  • pulp and paper
  • toxicity tests
  • WET
  • whole effluent toxicity