Skip to main content
Log in

P-wave spectra of the Füzesgyarmat, eastern Hungary earthquake sequence

  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

On 29–30 September 1996, an earthquake sequence occurred in the Füzesgyarmat region in eastern Hungary. The main shock had a magnitude of ML = 3.2 and was felt with a maximum intensity 4 MSK. It was preceded by a foreshock with a magnitude of ML = 2.8 and was followed, within six hours, by five aftershocks with magnitudes 2.1≤ML≤ 3.1. The dynamic source parameters of the Füzesgyarmat earthquake sequence have been derived from P-wave spectra of the Hungarian seismograph stations. The average of the obtained values at different stations shows that the main shock occurred on a fault length of 610 m, with relative displacement of 1.13 cm, stress drop of 7 bar and seismic moment of 3.96*1021 dyne.cm. The main shock was small to yield data for a full mechanism solution and no reliable single fault plane solution could be obtained due to the low signal to noise ratio at the recording stations. The parameters of the foreshock are fault length of 560m, seismic moment of 2.09*1021 dyne.cm, stress drop of 5.53 bar and relative displacement of 0.73 cm. The five aftershocks show source parameters similar to the foreshock stress drops (5.26≤ Δσ ≤ 5.76 bar), fault lengths (415 ≤L≤ 600 m), seismic moments (8.36*1020 ≤Mo ≤ 2.31*1021 dyne.cm) and relative displacements (0.52 ≤ ů ≤ 0.91 cm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bada, G., Cloetingh, S., Gerner, P. and Horváth, F., 1998, Sources of recent tectonic stress in the Pannonian region: inferences from finite element modelling, Geophy. J. Int. 134, 87–101.

    Google Scholar 

  • Badawy, A., 1995, Source parameters and tectonic implications of recent Sinai (Egypt) earthquakes, Acta Geod. Geoph. Hung. 30, 349–361.

    Google Scholar 

  • Badawy, A. and Mónus, P., 1995, Dynamic source parameters of the 12thOctober 1992 earthquake, Cairo, Egypt, J. Geodynamics 20, 99–109.

    Google Scholar 

  • Badawy, A., Horváth, F. and Tóth, L., 1998, Source parameters and tectonic interpretation of recent earthquakes (1995–1997) in the Pannonian basin, Tectonophysics (submitted).

  • Boatwright, J., 1980, A spectral theory of circular seismic sources: simple estimates of source dimension, dynamic stress drop and radiated seismic energy, Bull. Seismol. Soc. Am. 70, 1–27.

    Google Scholar 

  • Brune, J.B., 1970, Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75, 4997–5009.

    Google Scholar 

  • Brune, J.B., 1971, Correction, J. Geophys. Res. 76, 5002.

    Google Scholar 

  • Dövényi, P. and Horváth, F., 1988, A review of temperature, thermal conductivity and heat flow data from the Pannonian basin. In Royden, L. and Horváth, F. (eds), The Pannonian basin – A study in Basin Evolution, Am. Assoc. Petrol. Geol. Mem. 45, 195–235.

  • Fletcher, J.B., 1980, Spectra from high-dynamic range digital recordings of Oroville, California, aftershocks and their source parameters, Bull. Seismol. Soc. Am. 70, 735–755.

    Google Scholar 

  • Gerner, P., Bada, G., Dövényi, P., Müller, B., Oncescu, M., Cloetingh, S. and Horváth, F., 1998, Recent tectonic stress and crustal deformation in and around Pannonain basin: data and models. In Durand, B., Jolivet, L., Horváth, F., and Séranne, M. (eds), The Mediterranean basins: Tertiary extension within the Alpine orogen. Integrated basins studies. 1 Geol. Soc. Spec. Publ., London (in press).

    Google Scholar 

  • Gibowicz, S.J., 1975, Variation of source properties: The Inangahua, New Zealand, aftershocks of 1968, Bull. Seismol. Soc. Am. 65, 261–276.

    Google Scholar 

  • Hanks, T. and Johnson, D.A., 1976, Geophysical assessment of peak accelerations, Bull. Seismol. Soc. Am. 66, 959–968.

    Google Scholar 

  • Hanks, T. and McGuire, R., 1981, The character of high-frequency strong ground motion, Bull. Seismol. Soc. Am. 71, 2071–2095.

    Google Scholar 

  • Horváth, F., 1995, Phases of compression during the evolution of the Pannonian basin and its bearing on hydrocarbon exploration, Mar. petrol. Geol. 12, 837–844.

    Google Scholar 

  • Horváth, F. and Cloetingh, S., 1996, Stress-induced late stage subsidence anomalies in the Pannonian basin, Tectonophysics 266, 287–300.

    Google Scholar 

  • Iio, Y., 1992, Seismic source spectrum of microearthquakes, Bull. Seismol. Soc. Am. 82, 2391–2409.

    Google Scholar 

  • Kanamori, H. and Anderson, D.L., 1975, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am. 65, 1073–1095.

    Google Scholar 

  • Kitaibel, P. and Tomtsányi, Á., 1814, Dissertatio de terrae motu in genere, ac in specie Mórensi anno 1810. die 14 januarii orto. Buda, Hungary.

  • Kulhánek, O., Van Eck, T., John, N., Meyer, K. and Wahlström, R., 1983, Spectra of the earthquake sequence February-March, 1981, in south-central Sweden, Tectonophysics 93, 337–350.

    Google Scholar 

  • Lankreijer, A., 1998, Rheology and basement control on extensional basin evolution in central and eastern Europe: Variscan and Alpine-Carpathian-Pannonian tectonics. Ph.D. thesis Vrije University, Amsterdam.

    Google Scholar 

  • Lankreijer, A., Mocanu, V. and Cloetingh, S., 1997, Lateral variations in lithosphere strength in the Romanian Carpathian: constraints on basin evolution, Tectonophysics 272, 269–290.

    Google Scholar 

  • Marion, G.E., and Long, L.T., 1980, Microearthquake spectra in the southeastern United States, Bull. Seismol. Soc. Am. 70, 1037–1054.

    Google Scholar 

  • Quin, H., 1990, Dynamic stress drop and rupture of October 15, 1979 Imperial Valley, California, earthquake, Tectonphysics 175, 93–117.

    Google Scholar 

  • Randall, M.J., 1973, The spectral theory of seismic sources, Bull. Seismol. Soc. Am. 63, 1133–1144.

    Google Scholar 

  • Scholz, C.H., 1990, The mechanics of earthquakes and faulting. Cambridge, 439 pp. Cambridge University press.

  • Thatcher, W. and Hanks, T.C., 1973, Source parameters of southern California earthquakes, J. Geophys. Res. 78, 8547–8576.

    Google Scholar 

  • Tóth, L. and Mónus, P., 1997, The Microseismic Monitoring Network of the Paks NPP. In Seismic safety of the Paks Nuclear Power Plant, Akadémiai Kiadó, Budapest, pp. 113–121.

    Google Scholar 

  • Tóth, L., Mónus, P. and Zsiros, T., 1996, Hungarian earthquake bulletin, 1995. GeoRisk, Budapest, pp. 69.

    Google Scholar 

  • Tóth, L., Mónus, P. and Zsiros, T., 1997, Hungarian earthquake bulletin, 1996. GeoRisk, Budapest, pp. 67.

    Google Scholar 

  • Tóth, L., Mónus, P. and Zsiros, T., 1998, Hungarian earthquake bulletin, 1997. GeoRisk, Budapest, pp. 68.

    Google Scholar 

  • Zsiros, T., Mónus, P. and Tóth, L., 1988, Hungarian Earthquake Cataloge (456–1986). Published by MTA GGKI, pp. 182.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badawy, A. P-wave spectra of the Füzesgyarmat, eastern Hungary earthquake sequence. Journal of Seismology 4, 49–58 (2000). https://doi.org/10.1023/A:1009878410608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009878410608

Navigation