Skip to main content
Log in

Source Parameters of Strong Turkish Earthquakes on February 6, 2023 (Mw = 7.8 and Mw = 7.7) from Surface Wave Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

Based on the amplitude spectra of surface waves, the source parameters of the strong Turkish earthquakes on February 6, 2023 (Mw = 7.8 and Mw = 7.7) were calculated in two approximations: an instantaneous point source and an elliptical shear dislocation. As a result, fault planes were identified, data were obtained on the scalar seismic moment, moment magnitude, focal mechanism, and source depth of the considered seismic events, and the integral parameters characterizing the fault geometry and its development in time were estimated. It is shown that the sources of the earthquakes under study were formed under the action of the regional stress field and their focal mechanisms were sinistral strike-slips with a strike direction close to the strike of the East Anatolian fault zone for the first event and close to the strike of the Sürgü-Çardak fault system for the second one. For the first earthquake, our estimates of the rupture duration and its length (t = 52.5 s, L = 180 km) probably refer not to the entire rupture, but only to its main phase, confined to the northeastern segments of the East Anatolian Fault and characterized by maximum displacements and values of the released seismic moment. The values of t = 30 s and L = 180 km that we obtained for the second earthquake fully characterize the entire rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, A., and Rosakis, A., Revealing the dynamics of the Feb 6th 2023 M7.8 Kahramanmaraş/Pazarcik earthquake: Near-field records and dynamic rupture modeling, 2023. https://doi.org/10.48550/arXiv.2305.01825

  2. Acarel, D., Cambaz, M.D., Turhan, F., Mutlu, A.K., and Polat, R., Seismotectonics of Malatya fault, Eastern Turkey, Open Geosci., 2019, vol. 11, no. 1, pp. 1098–1111. https://doi.org/10.1515/geo-2019-0085

    Article  Google Scholar 

  3. Albuquerque Seismological Laboratory (ASL)/USGS, New China Digital Seismograph Network [Data set], International Federation of Digital Seismograph Networks, 1992. https://doi.org/10.7914/SN/IC

  4. Albuquerque Seismological Laboratory/USGS, Global Seismograph Network (GSN—IRIS/USGS) [Data set], International Federation of Digital Seismograph Networks, 2014. https://doi.org/10.7914/SN/IU

  5. Balkaya, M., Ozden, S., and Akyüz, H.S., Morphometric and morphotectonic characteristics of Sürgü and Çardak Faults (East Anatolian Fault Zone), J. Adv. Res. Nat. Appl. Sci., 2021, vol. 7, no. 3, pp. 375–392. https://doi.org/10.28979/jarnas.939075

    Article  Google Scholar 

  6. Barbot, S., Luo, H., Wang, T., Hamiel, Y., Piatibratova, O., Javed, M.T., Braitenberg, C., and Gurbuz, G., Slip distribution of the February 6, 2023 Mw 7.8 and Mw 7.6, Kahramanmaras, Turkey earthquake sequence in the East Anatolian fault zone, Seismica, 2023, vol. 2, no. 3. https://doi.org/10.26443/seismica.v2i3.502

  7. Bird, P., An updated digital model of plate boundaries, Geochem. Geophys. Geosyst., 2003, vol. 4, no. 3, p. 1027. https://doi.org/10.1029/2001GC000252

    Article  Google Scholar 

  8. Bukchin, B.G., On determining the parameters of the earthquake source from the records of surface waves in the medium with inaccurately specified characteristics, Izv. Akad. Nauk SSSR. Ser. Fiz. Zemli, 1989, no. 9, pp. 34–41.

  9. Bukchin, B., Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra, Tectonophysics, 1995, vol. 248, pp. 185–191. https://doi.org/10.1016/0040-1951(94)00271-A

    Article  Google Scholar 

  10. Bukchin, B.G., Specific features of surface wave radiation by a shallow source, Izv., Phys. Solid Earth, 2006, vol. 42, no. 8, pp. 712–717. https://doi.org/10.1134/S1069351306080088

    Article  Google Scholar 

  11. Bukchin, B.G., Second-moment approximation of the earthquake source and fault plane identification, Izv., Phys. Solid Earth, 2017, vol. 53, no. 2, pp. 243–249. https://doi.org/10.1134/S1069351317020045

    Article  Google Scholar 

  12. Bukchin, B., Clévédé, E., and Mostinskiy, A., Uncertainty of moment tensor determination from surface wave analysis for shallow earthquakes, J. Seismol., 2010, vol. 14, pp. 601–614. https://doi.org/10.1007/s10950-009-9185-8

    Article  Google Scholar 

  13. Bukchin, B.G., Fomochkina, A.S., Kossobokov, V.G., and Nekrasova, A.K., Characterizing the foreshock, main shock, and aftershock sequences of the recent major earthquakes in Southern Alaska, 2016-2018, Front. Earth Sci., 2020, vol. 8, p. 584659. https://doi.org/10.3389/feart.2020.584659

    Article  Google Scholar 

  14. Bulut, F., Bohnhoff, M., Eken, T., Janssen, C., Kiliç, T., and Dresen, G., The East Anatolian fault zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations, J. Geophys. Res.: Solid Earth, 2012, vol. 117, no. B7, p. 7304. https://doi.org/10.1029/2011JB008966

    Article  Google Scholar 

  15. Chen, W., Rao, G., Kang, D., Wan, Zh., and Wang, D., Early report of the source characteristics, ground motions, and casualty estimates of the 2023 Mw 7.8 and 7.5 Turkey earthquakes, J. Earth Sci., 2023, vol. 34, pp. 297–303. https://doi.org/10.1007/s12583-023-1316-6

    Article  Google Scholar 

  16. Clévédé, E., Bouin, M.-P., Bukchin, B., Mostinskiy, A., and Patau, G., New constraints on the rupture process of the 1999 August 17 Izmit earthquake deduced from estimates of stress glut rate moments, Geophys. J. Int., 2004, vol. 159, pp. 931–942. https://doi.org/10.1111/j.1365-246X.2004.02304.x

    Article  Google Scholar 

  17. Clévédé, E., Bukchin, B., Favreau, P., Mostinskiy, A., Aoudia, A., and Panza, G.F., Long-period spectral features of the Sumatra-Andaman 2004 earthquake rupture process, Geophys. J. Int, 2012, vol. 191, pp. 1215–1225. https://doi.org/10.1111/j.1365-246X.2012.05482.x

    Article  Google Scholar 

  18. Dal Zilio, L. and Ampuero, J.-P., Earthquake doublet in Turkey and Syria, Commun. Earth Environ., 2023, vol. 4, p. 71. https://doi.org/10.1038/s43247-023-00747-z

    Article  Google Scholar 

  19. Database of active faults of Eurasia, Scale 1 : 1000000, Moscow: Geol. Inst. Ross. Akad. Nauk, 2018. http://neotec.ginras.ru/database.html.

  20. Delouis, B., van den Ende, M., and Ampuero, J.-P., Kinematic rupture model of the February 6th 2023 Mw7.8 Turkey earthquake from a large set of near-source strong motion records combined by GNSS offsets reveals intermittent supershear rupture, Authorea, 2023. https://doi.org/10.22541/essoar.168286647.71550161/v1

    Book  Google Scholar 

  21. Dziewonski, A.M. and Anderson, D.L., Preliminary reference Earth model, Phys. Earth Planet. Int., 1981, vol. 25, no. 4, pp. 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

    Article  Google Scholar 

  22. Dziewonski, A.M. and Woodhouse, J.H., An experiment in systematic study of global seismicity: Centroid-moment-tensor solutions for 201 moderate and large earthquakes of 1981, J. Geophys. Res., 1983, vol. 88, pp. 3247–3271. https://doi.org/10.1029/JB088iB04p03247

    Article  Google Scholar 

  23. EMSC/CSEM. European-Mediterranean Seismological Centre, 2023. https://www.emsc-csem.org/Earthquake/. Cited May 17, 2023.

  24. Erdik, M., Tümsa, M.B.D., Pinar, A., Altunel, E., and Zülfikar, A.C., A preliminary report on the February 6, 2023 earthquakes in Türkiye, 2023. https://doi.org/10.32858/temblor.297

  25. ETOPO 2022: 15 Arc-Second Global Relief Model, 2022. https://doi.org/10.25921/fd45-gt74

  26. Filippova, A.I., Bukchin, B.G., Fomochkina, A.S., Melnikova, V.I., Radziminovich Ya B, and Gileva, N.A., Source process of the September 21, 2020 Mw 5.6 Bystraya earthquake at the south-eastern segment of the Main Sayan fault (Eastern Siberia, Russia), Tectonophysics, 2022, vol. 822, p. 229162. https://doi.org/10.1016/j.tecto.2021.229162

    Article  Google Scholar 

  27. Fomochkina, A.C. and Filippova, A.I., Source parameters of the January 20, 2013, Ulakhan-Chistaisk earthquake (Yakutia) from surface wave data, Vopr. Inzh. Seismol., 2023, vol. 50, no. 3, pp. 17–29. https://doi.org/10.21455/VIS2023.3-2

    Article  Google Scholar 

  28. Global CMT Web Page, On-line Catalog, Lamont-Doherty Earth Observatory (LDEO) of Columbia University, Columbia, S.C., USA, 2023. http://www.globalcmt.org. Cited May 15, 2023.

  29. Gómez, J.M., Bukchin, B., Madariaga, R., Rogozhin, E.A., and Bogachkin, B.M., Rupture process of the 19 August 1992 Susamyr, Kyrgyzstan, earthquake, J. Seismol, 1997, vol. 1, pp. 219–235. https://doi.org/10.1023/A:1009780226399

    Article  Google Scholar 

  30. Güvercin, S.E., Karabulut, H., Konca, A.O., Dogan, U., and Ergintav, S., Active seismotectonics of the East Anatolian Fault, Geophys. J. Int., 2022, vol. 230, pp. 50–69. https://doi.org/10.1093/gji/ggac045

    Article  Google Scholar 

  31. Hanks, T.C. and Kanamori, H., A moment magnitude scale, J. Geophys. Res.: Solid Earth, 1979, vol. 84, no. 5, pp. 2348–2350. https://doi.org/10.1029/JB084iB05p02348

    Article  Google Scholar 

  32. Hayes, G.P., Rivera, L., and Kanamori, H., Source inversion of the W-phase: Real-time implementation and extension to low magnitudes, Seism. Res. Lett., 2009, vol. 80, no. 5, pp. 817–822. https://doi.org/10.1785/gssrl.80.5.817

    Article  Google Scholar 

  33. Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M., Zoback, M., and Zoback, M., The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 2018, vol. 744, pp. 484–498. https://doi.org/10.1016/j.tecto.2018.07.007

    Article  Google Scholar 

  34. International Seismological Centre, 2023. On-line Bulletin. Int. Seis. Cent., Thatcham, United Kingdom, 2023. http://www.isc.ac.uk. Cited May 15, 2023.

  35. Ji, C., Wald, D.J., and Helmberger, D.V., Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis, Bull. Seismol. Soc. Am., 2002, vol. 92, pp. 1192–1207. https://doi.org/10.1785/0120000916

    Article  Google Scholar 

  36. Jiang, X.Y., Song, X.D., Li, T., and Wu, K.X., Moment magnitudes of two large Turkish earthquakes on February 6, 2023 from long-period coda, Earthquake Sci., 2023, vol. 36, no. 2, pp. 169–174. https://doi.org/10.1016/j.eqs.2023.02.008

    Article  Google Scholar 

  37. Kagan, Y.Y., Simplified algorithms for calculating double-couple rotation, Geophys. J. Int., 2007, vol. 171, no. 1, pp. 411–418. https://doi.org/10.1111/j.1365-246X.2007.03538.x

    Article  Google Scholar 

  38. Kanamori, H. and Rivera, L., Source inversion of W-phase: Speeding up seismic tsunami warning, Geophys. J. Int., 2008, vol. 175, no. 1, pp. 222–238. https://doi.org/10.1111/j.1365-246X.2008.03887.x

    Article  Google Scholar 

  39. Karabacak, V., Özkaymak, Ç., Sözbilir, H., Tatar, O., Aktug, B., Özdag, Ö.C., Çakir, R., Aksoy, E., Koçbulut, F., Softa, M., Akgün, A., Demir, A., and Arslan, G., The 2023 Pazarcik (Kahramanmaraş, Türkiye) earthquake (Mw 7.7): Implications for surface rupture dynamics along the East Anatolian Fault Zone, J. Geolog. Soc., 2023, vol. 180, no. 3, pp. jgs2023–020. https://doi.org/10.1144/jgs2023-020

    Article  Google Scholar 

  40. Karabulut, H., Güvercin, S.E., Hollingsworth, J., and Konca, A.O., Long silence on the East Anatolian Fault Zone (Southern Turkey) ends with devastating double earthquakes (6 February 2023) over a seismic gap: implications for the seismic potential in the Eastern Mediterranean region, J. Geolog. Soc., 2023, vol. 180, pp. jgs2023–021. https://doi.org/10.1144/jgs2023-021

    Article  Google Scholar 

  41. Kusky, T.M., Bozkurt, E., Meng, J., and Wang, L., Twin earthquakes devastate southeast Türkiye and Syria: First report from the epicenters, J. Earth Sci., 2023, vol. 34, no. 2, pp. 291–296. https://doi.org/10.1007/s12583-023-1317-5

    Article  Google Scholar 

  42. Lasserre, C., Bukchin, B., Bernard, P., Tapponier, P., Gaudemer, Y., Mostinsky, A., and Dailu, R., Source parameters and tectonic origin of the 1996 June 1 Tianzhu (M w = 5.2) and 1995 July 21 Yongen (M w = 5.6) earthquakes near the Haiyuan fault (Gansu, China), Geophys. J. Int., 2001, vol. 144, no. 1, pp. 206–220. https://doi.org/10.1046/j.1365-246x.2001.00313.x

    Article  Google Scholar 

  43. Levshin, A.L., Yanovskaya, T.B., Lander, A.V., Bukchin, B.G., Barmin, M.P., Ratnikova, L.I., and Its, E.N., Poverkhnostnye seismicheskie volny v gorizontal’no-neodnorodnoi Zemle (Surface Seismic Waves in Horizontally Inhomogeneous Earth), Moscow: Nauka, 1986.

  44. Mai, P.M., Aspiotis, T., Aquib, T.A., Cano, E.V., Castro-Cruz, D., Espindola-Carmona, A., Li, B., Li, X., Liu, J., Matrau, R., Nobile, A., Palgunadi, K.H., Ribot, M., Parisi, L., Suhendi, C., Tang, Yu., Yalcin, B., Avşar, U., Klinger, Ya., and Jónsson, S., The destructive earthquake doublet of 6 February 2023 in south-central Türkiye and northwestern Syria: Initial observations and analyses, Seism. Rec., vol. 3, no. 2, pp. 105–115. https://doi.org/10.1785/0320230007

  45. McKenzie, D., Active tectonics of the Mediterranean region, Geophys. J. R. Astron. Soc., 1972, vol. 30, no. 2, pp. 109–185. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x

    Article  Google Scholar 

  46. Melgar, D., Taymaz, T., Ganas, A., Crowell, B., Öcalan, T., Kahraman, M., Tsironi, V., Yolsal-Çevikbilen, S., Valkaniotis, S., Irmak, T.S., Eken, T., Erman, C., Ökyan, B., Dogan, A.H., and Altuntaş, C., Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye, Seismica, 2023, vol. 2, no. 3. https://doi.org/10.26443/seismica.v2i3.387

  47. Nataf, H.-C. and Ricard, Ya., 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modeling, Phys. Earth Planet. Int., 1996, vol. 95, nos. 1–2, pp. 101–122. https://doi.org/10.1016/0031-9201(95)03105-7

    Article  Google Scholar 

  48. National Earthquake Information Center, On-line Catalog, US Geological Survey, 2023. https://earthquake.usgs.gov. Cited May 15, 2023.

  49. Okuwaki, R., Yagi, Y., Taymaz, T., and Hicks, S.P., Multi-scale rupture growth with alternating directions in a complex fault network during the 2023 south-eastern Türkiye and Syria earthquake doublet, 2023. https://doi.org/10.31223/X5RD4W

  50. Rosakis, A.J., Abdelmeguid, M., and Elbanna, A., Evidence of early supershear transition in the Feb 6th 2023 Mw 7.8 Kahramanmaraş Turkey earthquake from near-field records, 2023. https://doi.org/10.31223/X5W95G

  51. Scripps Institution of Oceanography, Global Seismograph Network—IRIS/IDA [Data set], International Federation of Digital Seismograph Networks, 1986. https://doi.org/10.7914/SN/II

    Book  Google Scholar 

  52. Şengör, A.M.C. and Yilmaz, Y., Tethyan evolution of Turkey: A plate tectonic approach, Tectonophysics, 1981, vol. 75, nos. 3–4, pp. 181–241. https://doi.org/10.1016/0040-1951(81)90275-4

    Article  Google Scholar 

  53. Seredkina, A.I. and Kozmin, B.M., Source parameters of the Taimyr earthquake of June 9, 1990, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 342–345. https://doi.org/10.1134/S1028334X1702026X

    Article  Google Scholar 

  54. Seredkina, A.I., Melnikova, V.I., Radziminovich Ya. B, and Gileva, N.A., Seismicity of the Erguna region (Northeastern China): Evidence for local stress redistribution, Bull. Seism. Soc. Am., 2020, vol. 110, no. 2, pp. 803–815. https://doi.org/10.1785/0120190182

    Article  Google Scholar 

  55. Sesetyan, K., Stucchi, M., Castelli, V., and Gomez Caper, A.A., ahramanmaras¸ - Gaziantep Türkiye M7.7 earthquake, 6 February 2023 (04:17 GMT + 03:00). Large historical earthquakes of the earthquake-affected region: A preliminary report. 16.02.2023 (V1), 2023. https://eqe.boun. edu.tr/sites/eqe.boun.edu.tr/files/kahramanmaras-gaziantep_earthquake_06-02-2023_large_hist_eqs_v1.pdf. Cited May 17, 2023.

  56. Sipkin, S., Estimation of earthquake source parameters by the inversion of waveform data: synthetic waveforms, Phys. Earth Planet. Int., 1982, vol. 30, nos. 2–3, pp. 242–259. https://doi.org/10.1016/0031-9201(82)90111-X

    Article  Google Scholar 

  57. Stein, R.S., Toda, S., Özbakir, A.D., Sevilgen, V., Gonzalez-Huizar, H., Lotto, G., and Sevilgen, S., Interactions, stress changes, mysteries, and partial forecasts of the 2023 Kahramanmaras, Türkiye, earthquakes, 2023. https://doi.org/10.32858/temblor.299

  58. Yilmaz, H., Over, S., and Ozden, S., Kinematics of the East Anatolian Fault Zone between Turkoglu (Kahramanmaras) and Celikhan (Adiyaman), eastern Turkey, Earth, Planets Space, 2006, vol. 58, pp. 1463–1473. https://doi.org/10.1186/BF03352645

    Article  Google Scholar 

  59. Zahradnik, J., Turhan, F., Sokos, E., and Gallovic, F., Asperity-like (segmented) structure of the 6 February 2023 Turkish earthquakes, 2023. https://doi.org/10.31223/X5T666

  60. Zelenin, E., Bachmanov, D., Garipova, S., Trifonov, V., and Kozhurin, A., The Active Faults of Eurasia Database (AFEAD): The ontology and design behind the continental-scale dataset, Earth Syst. Sci. Data, 2022, vol. 14, no. 10, pp. 4489–4503. https://doi.org/10.5194/essd-14-4489-2022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Filippova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.I., Fomochkina, A.S. Source Parameters of Strong Turkish Earthquakes on February 6, 2023 (Mw = 7.8 and Mw = 7.7) from Surface Wave Data. Izv., Phys. Solid Earth 59, 899–911 (2023). https://doi.org/10.1134/S1069351323060071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351323060071

Keywords:

Navigation