Skip to main content
Log in

Endothelial Dysfunction in Congestive Heart Failure: Effects of Carvedilol

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

In this review, we have examined the role of oxidative stress and apoptosis in the continuum of molecular changes that accompanies congestive heart failure. Cytokine activation and tumor necrosis factor-α, in particular, may play a role in this continuum, favouring both oxidative stress and apoptosis. Carvedilol, a non selective β- and α-blocker, exerts an anti-apoptotic effect on both the myocytes and the endothelial cells as a consequence of its antioxidant activity. The ability of carvedilol to inhibit apoptosis may have important clinical relevance in congestive heart failure. It is also important to emphasise that, in congestive heart failure, apoptosis occurs, not only in the heart, but also in the periphery. An increased rate of endothelial apoptosis may explain the occurrence of endothelial dysfunction in congestive heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardio 1992;20:248–254.

    Google Scholar 

  2. The Consensus Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: Results of the Co-operative North Scandinavian Enlapril Survival Study. New Engl J Med 1987;316:1429–1435.

    Google Scholar 

  3. Packer M, Bristow MR, Cohn JN, for the US Carvedilol Heart Failure Study Group. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. New Engl J Med 1996;334:1349–1355.

    Google Scholar 

  4. Rales Study Report AT AHA, 1998.

  5. Testa M, Yeh M, Lee P, Fanelli R, Loperfield F, Berman JW, Le Jemtel TH. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 1996;28:964–971.

    Google Scholar 

  6. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. New Engl J Med 1990;323:236–241.

    Google Scholar 

  7. Ferrari R, Bachetti T, Confortini R, Opasich C, Febo O, Corti A, Cassani G, Visioli O. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1995;92:1479–1486.

    Google Scholar 

  8. Aukrust P, Veland Y, Muller F, Andreassen AK, Nordoy I, Aes H, Kiesshus J, Simonsen S, Froland SS, Gullestad L. Elevated circulating levels of C-C chemokines in patients with congestive heart failure. Circulation 1988;97:1136–1143.

    Google Scholar 

  9. Ferrari R. Tumor necrosis factor in CHF: A double facet cytokine. Cardiovasc Res 1998;37:554–559.

    Google Scholar 

  10. Ferrari R, Ceconi C, Curello S, Guarnieri C, Caldarera CM, Albertini A, Visioli O. Oxygen-mediated myocardial damage during ischaemia and reperfusion: Role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol 1985;17:937–945.

    Google Scholar 

  11. Australia/New Zealand Heart Failure Research Collaborative Group. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to Ischaemic heart disease. Lancet 1997;349:375–380.

    Google Scholar 

  12. Feuerstein G, Yue TL, Xinliang MA, Ruffolo RR. Novel mechanisms in the treatment of heart failure: Inhibition of oxygen radicals and apoptosis by carvedilol. Prog Cardiovasc Dis 1998;41:17–24.

    Google Scholar 

  13. Ferrari R. The role of free radicals in ischaemic myocardium. Br J Clin Prac 1990;44:301–305.

    Google Scholar 

  14. Ferrari R, Curello S, Ceconi C, Cargnoni A, Condorelli E, Albertini A. Alterations of glutathione status during myocardial ischaemia and reperfusion. In: Singal PK, ed. Oxygen Radicals in the Pathophysiology of Heart Disease. Boston: Kluwer Academic Publishers, 1988:145–160.

    Google Scholar 

  15. Ferrari R, Ceconi C, Curello S, Cargnoni A, Agnoletti G, Boffa GM, Visioli O. Intracellular effects of myocardial ischaemia and reperfusion: Role of calcium and oxygen. Eur Heart J 1986;7:3–12.

    Google Scholar 

  16. Curello S, Ceconi C, Cargnoni A, Cornacchiari A, Ferrari R, Albertini A. Improved procedure for determining glutathione in plasma as an index of myocardial oxidative stress. Clin Chem 1987;33:1448–1449.

    Google Scholar 

  17. Ferrari R, Ceconi C, Curello S, Cargnoni A, Medici D. Oxygen-free radicals and reperfusion injury: The effect of ischaemia and reperfusion on the cellular ability to neutralize oxygen toxicity. J Mol Cell Cardiol 1986;18:67–69.

    Google Scholar 

  18. Dhalla AK, Singal PK. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 1994;266: H1280–H1285.

    Google Scholar 

  19. Prasad K, Gupta JB, Kalra J, Lee P, Mantha SV, Bharadwaj B. Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. J Mol Cell Cardiol 1996;28:375–385.

    Google Scholar 

  20. Kirshenbaum LA, Singal PK. Antioxidant changes in heart hypertrophy: Significance during hypoxia-reoxygenation injury. Can J Physiol Pharmacol 1992;70:1330–1335.

    Google Scholar 

  21. Galinanes M, Ferrari R, Qui Y, Cargnoni A, Ezrin A, Hearse DJ. PEG-SOD and myocardial antioxidant status during ischaemia and reperfusion: Dose-response studies in isolated blood perfused rabbit heart. J Moll Cell Cardiol 1992;24: 1021–1030.

    Google Scholar 

  22. Wever RM, Luscher TF, Cosentino F, Rabelink TJ. Atherosclerosis and two faces of endothelial nitric oxide synthase. Circulation 1988;97:108–112.

    Google Scholar 

  23. Tarr MT, Valenzeno DP. Modification of cardiac action potential by photosensitiser-generated reactive oxygen. J Mol Cell Cardiol 1989;21:539–543.

    Google Scholar 

  24. Pallandi RT, Perry MA, Campbell TJ. Proarrhythmic effects of an oxygen-derived free radical generating system on action potentials recorded from guinea pig ventricular myocardium: A possible cause of reperfusion-induced arrhythmias. Circ Res 1987;61:50–54.

    Google Scholar 

  25. Hearse DJ. Stunning: A radical re-</del>view. Cardiovasc Drugs Ther 1991;5:853–876.

    Google Scholar 

  26. MacFarlane NG, Miller DJ. Depression of peak force without altering calcium sensitivity by the superoxide anion in chemically skinned cardiac muscle of rat. Circ Res 1992; 70:1217–24.

    Google Scholar 

  27. Gao WD, Atar D, Liu Y, Perez NG, Murphy AM, Marban E. Role of troponin I proteolysis in the pathogenesis of stunned myocardium. Circ Res 1997;80:393–399.

    Google Scholar 

  28. Singh N, Dhalla AK, Seneviratne C, Singal PK. Oxidative stress and heart failure. Mol Cell Biochem 1995;147:77–81.

    Google Scholar 

  29. Davies SW, Ranjadayalan K, Wickens DG, Dormandy TL, Umachandran V, Timmis AD. Free radical activity and left ventricular function after thrombolysis for acute infarction. Br Heart J 1993;69:114–120.

    Google Scholar 

  30. Roberts MJD, Young IS, Trouton TG, Trimble ER, Khan MM, Webb SW, Wilson CM, Patterson GC, Adgey AAJ. Transient release of lipid peroxides after coronary artery balloon angioplasty. Lancet 1990;336:143–145.

    Google Scholar 

  31. MacLellan WR, Schneiderm D. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997;81:137–144

    Google Scholar 

  32. Nishiyama Y, Ikeda H, Haramaki N, Yoshida N, Imaizumi T. Oxidative stress is related to exercise intolerance in patients with heart failure. Am Heart J 1998;135:115–120.

    Google Scholar 

  33. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–1356.

    Google Scholar 

  34. Díaz-Vélez CR, García-Castiñeiras S, Mendoza-Ramos E, Hernández-López E. Increased malondialdehyde in periph-Endothelial Dysfunction pheriperal blood of patients with congestive heart failure. Am Heart J 1996;131:146–152.

    Google Scholar 

  35. Comini L, Bachetti T, Agnoletti L, Gaia G, Curello S, Milanesi B, Volterrani M, Parrinello G, Ceconi C, Giordano A, Corti A, Ferrari R. Induction of functional inducible nitric oxide synthase in the monocytes of patients with congestive heart failure: Link with tumor necrosis factor-a. Eur Heart J; in press.

  36. Weissmann G, Smolen JE, Korchak HM. Release of inflammatory mediators from stimulated neutrophils. N Engl J Med 1980;303:27–34.

    Google Scholar 

  37. Delanty N, Reilly MP, Pratico D, Lawson JA, McCarthy JF, Wood AE, Ohnishi ST, Fitzgerald DJ, Fitzgerald GA. 8-Epi PGF2a generation during coronary reperfusion. A potential quantitative marker of oxidant stress in vivo. Circulation 1997;95:2492–2499.

    Google Scholar 

  38. Majno G, Joris I. Apoptosis, oncosis and necrosis: An overview of cell death. Am J Pathol 1995;146:3–15.

    Google Scholar 

  39. Hetts SW. To die or not to die. An overview of apoptosis and its role in disease. JAMA 1998;279:300–306.

    Google Scholar 

  40. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma: Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 1995;147:251–266.

    Google Scholar 

  41. Bjorkerud S, Bjorkarud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells) and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996 149:367–380.

    Google Scholar 

  42. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factoralpha, and interleukin-I beta. Atheroscler Thromb Vasc Biol 1996;16:19–27.

    Google Scholar 

  43. Dimmeler S, Haendeler J, Galle J, Zeiher AM. Oxidized low-density lipoprotein induces apoptosis of human endothelial cells by activation of CPP32-like protease: A mechanistic clue to the "response to injury" hypothesis. Circulation 1997;95:1760–1763.

    Google Scholar 

  44. Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab Invest 1991;64:5–15.

    Google Scholar 

  45. Itoh G, Tamura J, Suzuki M, Suzuki Y, Ikeda H, Koike M, Nomura M, Jie T, Ito K. DNA fragmentation of human infracted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 1995;146:1325–1331.

    Google Scholar 

  46. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. Apoptosis in human acute myocardial infarction. Circulation 1997;95:320–323.

    Google Scholar 

  47. Olivetti G, Quaini F, Sala R, Lagrasta C, Corradi D, Bonacina E, Gambert SR, Cigola E, Anversa P. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996;28:2005–2016.

    Google Scholar 

  48. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;79:949–956.

    Google Scholar 

  49. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994;75:426–433.

    Google Scholar 

  50. MacLellan WR, Schneider MD. Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 1997;81:137–144.

    Google Scholar 

  51. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 1995;73:771–787.

    Google Scholar 

  52. Cheng W, Li B, Kajstura J, Li P, Wolin MS, Sonnenblick EH, Hintze TH, Olivetti G, Anversa P. Stretch-induced programmed myocyte cell death. J Clin Invest 1995;96:2247–2259.

    Google Scholar 

  53. Teiger E, Than VD, Richard L, Wisnewsky C, Tea BS, Gaboury L, Tremblay J, Schwartz K, Hamet P. Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 1996;97:2891–2897.

    Google Scholar 

  54. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182–1189.

    Google Scholar 

  55. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996;335:1190–1196.

    Google Scholar 

  56. Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29:859–870.

    Google Scholar 

  57. Thompson CB. Apoptosis in the patholgenesis and treatment of disease. Science 1995;267:1456–1462.

    Google Scholar 

  58. Wu CF, Bishopric NH, Pratt RE. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac cyocytes. J Biol Chem 1997;272:14860–14866.

    Google Scholar 

  59. Zhong LT, Sarafian T, Kane DJ, Charles AC, Mah SP, Edwards RH, Bredesen DE. Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 1993;90:4533–4537.

    Google Scholar 

  60. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJE, Sabbadini RA. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes: Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest 1996;98: 2854–2865.

    Google Scholar 

  61. Tartaglia LA, Ayres TM, Wong GH, Goeddel DV. A novel domain within the 55b kd TNF receptor signals cell death. Cell 1993;74:845–853.

    Google Scholar 

  62. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell 1996;87:171.

    Google Scholar 

  63. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-I, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspace-3. Cell 1997;90:405–413.

    Google Scholar 

  64. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and ATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479–489.

    Google Scholar 

  65. Zamzami N, Susin SA, Marchetti P, Hirsch T, Gomez-Monterrey I, Castedo M, Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med 1996;183:1533–1544.

    Google Scholar 

  66. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995;1241:139–176.

    Google Scholar 

  67. Feuerstein G, Shusterman NH, Ruffolo RR Jr. Carvedilol update IV: Prevention of oxidative stress, cardiac remodeling and progression of congestive heart failure. Drugs Today 1997;33:453–473.

    Google Scholar 

  68. Aruoma OI. Scavenging of hypochlorous acid by carvedilol and elbselen in vitro. Gen Pharmacol 1997;28:269–272.

    Google Scholar 

  69. Aruoma OI. Peroxyl radical scavenging activity of the antihypertensive drug carvedilol. Toxicol Vitro 1996;10:625–629.

    Google Scholar 

  70. Kramer JH, Weglicki WB. A hydroxylated analog of the b-adrenoceptor antagonist, carvedilol affords exceptional antioxidant protection to post-ischemic rat hearts, Free Radic Biol Med 1996;21:813–825.

    Google Scholar 

  71. Christopher TA, Lopez B, Feuerstein GZ, et al. Effects of a hydroxylated metabolite of the b-adrenoreceptor antagonist, carvedilol on post-ischemic splanchnic tissue injury. Br J Pharmacol 1998;123:292–298.

    Google Scholar 

  72. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR, Feverstein GZ. Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion induced cardiomyocyte apoptosis by carvedilol. Circ Res 1998;82:166–174.

    Google Scholar 

  73. Agnoletti L, Curello S, Bachetti T, Malacarne F, Gaia G, Comini L, Volterrani M, Bonetti P, Parrinello G, Cadei M, Grigolato PG, Ferrari R. Serum from patients with severe heart failure down-regulates eNOS and is pro-apoptotic: Role of the tumor necrosis factor-a. Circulation 1999; in Publications.

  74. Rigoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring myocyte apoptosis to propidium iodide staining and flow cytometry. J Immunol Meth 1991;139:271–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, R., Agnoletti, L., Ceconi, C. et al. Endothelial Dysfunction in Congestive Heart Failure: Effects of Carvedilol. Heart Fail Rev 4, 53–64 (1999). https://doi.org/10.1023/A:1009855801777

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009855801777

Keywords

Navigation