Skip to main content
Log in

The Control of Adrenergic Function in Heart Failure: Therapeutic Intervention

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Chronic heart failure is characterised by excess adrenergic activity that augurs a poor prognosis. The reasons for increased adrenergic activity are complex and incompletely understood. The circumstantial evidence relating increased activity to adverse outcome is powerful, but not yet conclusive.

In normal subjects, autonomic control of the circulation is predominantly under the control of sympatho-inhibitory inputs from the arterial and cardiopulmonary baroreceptors, with a small input from the excitatory ergo- and chemo-receptors. In heart failure, the situation is reversed, with loss of the restraining input from the baroreceptors and an increase in the excitatory inputs, resulting in excessive adrenergic activity.

The circumstantial evidence linking neuroendocrine activation with poor outcome coupled with the clinical success of inhibition of the renin-angiotensin-aldosterone system has long suggested that inhibition of adrenergic activity might be beneficial in heart failure. There is a number of potential ways of achieving this. Improved treatment of heart failure itself may reduce sympathetic drive. There is an interplay between angiotensin II, aldosterone and the sympathetic nervous system, and thus RAAS antagonists, such as angiotensin converting enzyme inhibitors and spironolactone could directly reduce sympathetic activation. Exercise rehabilitation may similarly reduce sympathetic activity.

Recently, β-adrenergic receptor antagonists have been conclusively shown to improve symptoms, reduce hospitalisations and increase survival. However, the demonstration that central reduction of sympathetic activity with agents such as moxonidine increases morbidity and mortality suggests that we do not properly understand the role of sympathetic activation in the pathophysiology of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McMurray JJV, Hart W, Rhodes G. An evaluation of the cost of heart failure to the National Health Service in the UK. Br J Med Economics 1993;6:99–110.

    Google Scholar 

  2. Cleland JGF. Health economic consequences of the pharmacological treatment of heart failure. Eur Heart J 1998;19(suppl P):P32–P39.

    Google Scholar 

  3. Cleland JGF, McGowan J, Clark A, Freemantle N. The evidence for ?-blockers in heart failure. Br Med J 1999;318:824–825.

    Google Scholar 

  4. Davis JS, Sinoway LI, Robinson J, Minotti JR, Day FP, Baily R, Zelis R. Norepinephrine kinetics during orthostatic stress in congestive heart failure. Circ Res 1987;61(suppl I):I-87–I-91.

    Google Scholar 

  5. Leimbach WN, Wallin BG, Victor RG, Alyward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 1986;73:913–919.

    Google Scholar 

  6. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–823.

    Google Scholar 

  7. Rector TS, Olivari MT, Levine TB, Francis GS, Cohn JN. Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am Heart J 1987;114:148–52.

    Google Scholar 

  8. Mancia G. Sympathetic activation in congestive heart failure. Eur Heart J 1990;11(suppl A):3–11.

    Google Scholar 

  9. Mancia G, Seravalle G, Giannattasio C, Bossi M, Preti L, Cattaneo BM, Grassi G. Reflex cardiovascular control in congestive heart failure. Am J Cardiol 1992;69:17G–23G.

    Google Scholar 

  10. Harris P. Congestive cardiac failure. Central role of the arterial blood pressure. Br Heart J 1987;58:190–203.

    Google Scholar 

  11. Mohanty PK, Thames MD, Arrowood JA, Sowers JR, McNamara C, Szentpetery S. Impairment of cardiopulmonary baroreflex after cardiac transplantation in humans. Circulation 1987;75:914–21.

    Google Scholar 

  12. Grassi G, Giannattasio C, Saino A, Sabadini E, Capozi A, Sampieri L, Cuspidi C, Mancia G. Cardiopulmonary receptor modulation of plasma renin activity in normotensive and hypertensive subjects. Hypertension 1988;11:92–9.

    Google Scholar 

  13. Iaria CT, Jalar UH, Kao FF. The peripheral neural mechanism of exercise hyperpnoea. J Physiol 1959;148:49P–50P.

    Google Scholar 

  14. Rowell LB, O'Learly DS. Reflex control of the circulation of during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 1990;69:407–418.

    Google Scholar 

  15. McCloskey DI, Mitchell JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol 1972;224:173–87.

    Google Scholar 

  16. Hultman E, Sjoholm H. Blood pressure and heart rate response to voluntary and nonvoluntary static exercise in man. Acta Physiol Scand 1982;115:499–501.

    Google Scholar 

  17. Gandevia SC, Hobbs SF. Cardiovascular responses to static exercise in man: central and reflex contributions. J Physiol 1990;430:105–17.

    Google Scholar 

  18. Piepoli M, Clark AL, Coats AJS. Muscle metaboreceptors in the hemodynamic, autonomic and ventilatory responses to exercise in man. Am J Physiol 1995;269(Heart Circ Physiol 38):H1428–H1436.

    Google Scholar 

  19. Iellamo F, Pizzinelli P, Massaro M, Raimondi G, Peruzzi G, Legramante JM. Muscle metaboreflex contribution to sinus node regulation during static exercise. Circulation 1999;100:27–32.

    Google Scholar 

  20. Ferguson DW, Abboud FM, Mark AL. Selective impairment of baroreflex-mediated vasoconstrictor responses in patients with ventricular dysfunction. Circulation 1984;69:451–60.

    Google Scholar 

  21. Ellenbogen KA, Mohanty PK, Szentpetery S, Thames MD. Arterial baroreflex abnormalities in heart failure: reversal after orthotopic cardiac transplantation. Circulation 1989;79:51–8.

    Google Scholar 

  22. Marin-Neto JA, Pintya AO, Gallo L Jr, Marciel BC. Abnormal baroreflex control of heart rate in decompensated congestive heart failure and reversal after compensation. Am J Cardiol 1991;67:604–10.

    Google Scholar 

  23. Grassi C, Seravalle G, Cattaneo BM, Lanfranchi A, Vitali S, Giannattasio C, Del Bo A, Sala C, Bolla G, Pozzi M, Mancia G. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation 1995;92:3206–3211.

    Google Scholar 

  24. Mohanty PK, Arrowood JA, Ellenbogen KA, Thames MD. Neurohumoral and hemodynamic effects of lower body negative pressure in patients with congestive heart failure. Am Heart J 1989;118:78–85.

    Google Scholar 

  25. Brändle M, Wang W, Zucker IH. Ventricular mechanoreflex and chemoreflex alterations in chronic heart failure. Circ Res 1994;74:262–70.

    Google Scholar 

  26. Sterns DA, Ettinger SM, Gray KS, Whistler SK, Mosher TJ, Smith MB, Sinoway LI. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation 1991;84:2034–39.

    Google Scholar 

  27. Ferguson DW, Berg WJ, Sanders JS. Clinical and hemodynamic correlates of sympathetic nerve activity in normal humans and patients with heart failure: evidence from direct microneurographic recordings. J Am Coll Cardiol 1990;16:1125–34.

    Google Scholar 

  28. Piepoli M, Clark A, Volterrani M, Adamopoulos S, Sleight P, Coats AJS. Contribution of muscle afferents to the hemodynamic, autonomic and ventilatory responses to exercise in patients with chronic heart failure. Circulation 1996;93:940–952.

    Google Scholar 

  29. Harris R, Edwards R, Hultman E, Nordesjo L, Nylind B, Sahlin K. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Eur J Physiol 1976;367:137–142.

    Google Scholar 

  30. Grieve DAA, Clark AL, McCann GP, Hillis WS. The Ergoreflex in patients with chronic stable heart failure. Int J Cardiol 1999;68:157–164.

    Google Scholar 

  31. Piepoli M, Ponikowski P, Clark AL, Banasiak W, Capucci A, Coats AJ. A neural link to explain the “muscle hypothesis” of exercise intolerance in chronic heart failure. Am Heart J 1999;137:1050–6.

    Google Scholar 

  32. Mancini DM, Walter G, Reichnek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR. Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 1992;85:1364–73.

    Google Scholar 

  33. Buller NP, Jones D, Poole-Wilson PA. Direct measurements of skeletal muscle fatigue in patients with chronic heart failure. Br Heart J 1991;65:20–24.

    Google Scholar 

  34. Minotti JR, Pillay P, Chang L, Wells L, Massie BM. Neurophysiological assessment of skeletal muscle fatigue in patients with congestive heart failure. Circulation 1992;86:903–8.

    Google Scholar 

  35. Lipkin D, Jones D, Round J, Poole-Wilson P. Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 1988;18:187–95.

    Google Scholar 

  36. Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR. Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle abnormalities in patients with chronic heart failure. Circulation 1989;80:1338–1346.

    Google Scholar 

  37. Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 1990;81:518–27.

    Google Scholar 

  38. Clark AL, Piepoli M, Coats AJS. Skeletal muscle and the control of ventilation on exercise; evidence for metabolic receptors. Eur J Clin Invest 1995;25:299–305.

    Google Scholar 

  39. Clark AL, Poole-Wilson PA, Coats AJS. Exercise limitation in chronic heart failure: The central role of the periphery. J Am Coll Cardiol 1996;28:1092–1102.

    Google Scholar 

  40. Heistad DD, Abboud FM, Mark AL, Schmid PG. Interaction of baroreceptor and chemoreceptor reflexes: modulation of the chemoreceptor reflex by changes in baroreceptor activity. JClin Invest 1974;53:1226–1236.

    Google Scholar 

  41. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest 1991;87:1953–57.

    Google Scholar 

  42. McClean PA, Phillipson EA, Martinez D, Zamel N. Single breath of CO2 as a clinical test of the peripheral chemoreflex. J Appl Physiol 1988;64:84–9.

    Google Scholar 

  43. Read DJC. A clinical method for assessing the ventilatory response to carbon dioxide. tiAustralas Ann Med 1966;16:20–32.

    Google Scholar 

  44. Chua TP, Clark AL, Amadi A, Coats AJS. Relationship between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol 1996;27:650–657.

    Google Scholar 

  45. Chua TP, Ponikowski PP, Harrington D, Chambers J, Coats AJS. Contribution of peripheral chemoreceptors to ventilation and the effects of their suppression on exercise tolerance in chronic heart failure. Heart 1996;76:483–9.

    Google Scholar 

  46. Chua TP, Ponikowski PP, Webb-Peploe K, Harrington D, Anker SD, Piepoli M, Coats AJS. Clinical characteristics of chronic heart failure patients with an augmented peripheral chemoreflex. Eur Heart J 1997;18:480–6.

    Google Scholar 

  47. Ponikowski P, Chua TP, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D, Anker SD, Volterrani M, Colombo R, Mazzuero G, Giordano A, Coats AJS. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation 1997;96:2586–94.

    Google Scholar 

  48. Narkiewicz K, Pesek CA, van de Borne PJH, Kato M, Somers VK. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation 1999;100:262–267.

    Google Scholar 

  49. Clark AL, Coats AJS. Usefulness of arterial blood gas estimations during exercise in patients with chronic heart failure. tiBr Heart J 1994;71:528–530.

    Google Scholar 

  50. Clark AL, Volterrani M, Swan JW, Coats AJS. Increased ventilatory response to exercise in chronic heart failure: relation to pulmonary pathology. Heart 1997;77:138–146.

    Google Scholar 

  51. Sun S-Y, Wang W, Zucker IH, Schultz HD. Enhanced activity of carotid body chemoreceptors in rabbits with heart failure: role of nitric oxide. J Appl Physiol 1999;86:1273–82.

    Google Scholar 

  52. Sun S-Y, Wang W, Zucker IH, Schultz HD. Enhanced peripheral chemoreflex function in conscious rabbits with pacing-induced heart failure. J Appl Physiol 1999;86:1264–1272.

    Google Scholar 

  53. Narkiewicz K, Pesek CA, van de Borne PJH, Kato M, Somers VK. Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation 1999;100:262–267.

    Google Scholar 

  54. van de Borne P, Oren R, Anderson EA, Mark AL, Somers VK. Tonic chemoreflex activation does not contribute to elevated muscle sympathetic nerve activity in heart failure. Circulation 1996;94:1325–28.

    Google Scholar 

  55. Cheyne JA. A case of apoplexy in which the fleshy part of the heart was converted into fat. Dublin Hosp Rep 1818;2:216–9.

    Google Scholar 

  56. Douglas CG, Haldane JS. Causes of periodic or Cheyne-Stokes breathing. J Physiol 1909;38:401–19.

    Google Scholar 

  57. Ponikowski P, Chua TP, Piepoli M, Amadi AA, Harrington D, Webb-Peploe K, Volterrani M, Colombo R, Mazzuero G, Giordano A, Coats AJS. Chemoreceptor dependence of very low frequency rhythms in advanced chronic heart failure. Am J Physiol 1997;272(Heart Circ Physiol):H438–H447.

    Google Scholar 

  58. Pryor WW. Cheyne-Stokes respiration in patients with cardiac enlargement and prolonged circulation time. Circulation 1951;4:233–8.

    Google Scholar 

  59. Hall MJ, Xie A, Rutherford R, Ando S-I, Floras JS, Bradley TD. Cycle length of periodic breathing in patients with and without congestive heart failure. Am J Respir Crit Care Med 1996;154:376–81.

    Google Scholar 

  60. Piepoli MF, Ponikowski PP, Volterrani M, Francis D, Coats AJS. Aetiology and pathophysiological implications of oscillatory ventilation at rest and during exercise in chronic heart failure. Eur Heart J 1999;20:946–53.

    Google Scholar 

  61. Bayliss J, Norell M, Canepa-Anson R, Sutton G, Poole-Wilson P. Untreated heart failure:pp clinical and neuroendrocrine effects of introducing diuretics. Br Heart J 1987;57:17–22.

    Google Scholar 

  62. Cody RJ, Covit AB, Schaer GL, Laragh JH, Sealey JE, Feldshuh J. Sodium and water balance in chronic congestive heart failure. J Clin Invest 1986;77:1441–52.

    Google Scholar 

  63. The Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet 1990;336:1–6.

    Google Scholar 

  64. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML, Mallis GI, Sollano JA, Shannon J, Tandon PK, DeMets DL for the PROMISE Study Research Group. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 1991;325:1468–1475.

    Google Scholar 

  65. The CONSENSUS trial study group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987;316:1429–35.

    Google Scholar 

  66. The SOLVD investigators. Effects of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991;352:2939–302.

    Google Scholar 

  67. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9–13.

    Google Scholar 

  68. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001–07.

    Google Scholar 

  69. Mann DL, Cooper G. Propranolol prevents the myopathic effects of catecholamines in vitro: implications for patients with congestive heart failure. Circulation 1988;78(suppl II):II–576.

    Google Scholar 

  70. Mann DL, Kent RL, Pardons B, Cooper IV. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992;85:790–804.

    Google Scholar 

  71. Currie PJ, Kelly MJ, McKenzie A, Harper RW, Lim YL, Federman J, Anderson ST, Pitt A. Oral betaadrenergic blockade with metoprolol in chronic severe dilated cardiomyopathy. J Am Coll Cardiol 1984;3:203–9.

    Google Scholar 

  72. Eichhorn EJ, McGhie I, Bedotto JB, Corbett JR, Malloy CR, Hatfield BA, Deitchman D, Willard JE, Grayburn PA. Effects of bucindolol on neurohormonal activation in congestive heart failure. Am J Cardiol 1991;67:67–73.

    Google Scholar 

  73. Gilbert EM, Anderson JL, Deitchman D, Yanowitz FG, O'Connell JB, Renlund DG, Bartholomew M, Mealey PC, Larrabee P, Bristow MR. Long-term ?-blocker vasodilator therapy improves cardiac function in idiopathic dilated cardiomyopathy: a double-blind randomized study of bucindolol versus placebo. Am J Med 1990;88:223–9.

    Google Scholar 

  74. Andersson B, Hamm C, Persson S, Wikström G, Sinagra G, Hjalmarson Å., Waagstein F. Improved exercise hemodynamic status in dilated cardiomyopathy after beta-blockade treatment. J Am Coll Cardiol 1994;23:1397–1404.

    Google Scholar 

  75. Brodde O-E, Schüler S, Kretsch R, Brinkmann M, Borst HG, Hetzer R, Reidemeister JC, Warnecke H, Zerkowski HR. Regional distribution of ?-adrenoceptors in the human heart. Coexistence of function ?1-and ?2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol 1986;8:1235–42.

    Google Scholar 

  76. Bristow MR, Ginsburg R, Unmans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB. ?1-and ?2-adrenergic receptor subpopulations in failing and non-failing human ventricular myocardium. Coupling of both receptor subtypes to muscle contraction and selective ?1-receptor downregulation in heart failure. Circ Res 1986;59:297–309.

    Google Scholar 

  77. Bouvier M, Collins S, O'Dowd BF, Campbell PT, de Blasi A, Kobilka BK, MacGregor C, Irons GP, Caron MG, Lefkowitz RJ. Two distinct pathways for cAMPmediated down-regulation of the beta 2-adrenergic receptor. Phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 1989;264:16786–92.

    Google Scholar 

  78. Freedman NJ, Liggett SB, Drachman DE, Pei G, Caron MG, Lefkowitz RJ. Phosphorylation and desensitization of the human beta 1-adrenergic receptor. Involvement of G protein-coupled receptor kinases and cAMP-dependent protein kinase. J Biol Chem 1995;270:17953–61.

    Google Scholar 

  79. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsberg R, Fowler MB. Increased ?-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 1989;79:483–490.

    Google Scholar 

  80. Bristow MR. Pathophysiologic and pharmacologic rationales for clinical management of chronic heart failure with beta-blocking agents. Am J Cardiol 1993;71:C12–C22.

    Google Scholar 

  81. Hall JA, Petch MC, Brown MJ. In vivo demonstration of cardiac beta 2-adrenoreceptor sensitization by beta 1-antagonist treatment. Circ Res 1991;69:959–64.

    Google Scholar 

  82. Eichhorn EJ, Bedotto JB, Malloy CR, Hatfield B, Deitchman D, Brown M, Willard JE, Grayburn PA. Effects of beta-adrenergic blockade on myocardial function and energetics in congestive heart failure. Circulation 1990;82:473–83.

    Google Scholar 

  83. Ferro G, Duilio C, Spinaelli L, Spadafora M, Guarnaccia F, Condorelli M. Effects of beta-blockade on the relation between heart rate and ventricular diastolic perfusion time during exercise in systemic hypertension. Am J Cardiol 1991;68:1101–3.

    Google Scholar 

  84. Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ. Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. tiJ Am Coll Cardiol 1995;25:1154–61.

    Google Scholar 

  85. Waagstein F, Caidahl K, Wallentin I, Bergh C-H, Hjalmarson Å. Long-term ?-blockade in dilated cardiomyopathy. Effects of short-and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 1989;80:551–63.

    Google Scholar 

  86. Eichhorn EJ, Heesch CM, Barnett JH, Alvarez LG, Fass SM, Grayburn PA, Hatfield BA, Marcoux LG, Malloy CR. Effects of metoprolol on myocardial function and energetics in patients with non-ischaemic dilated cardiomyopathy: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol 1994;24:1310–20.

    Google Scholar 

  87. Packer M, Colucci WS, Sackner-Bernstein JD, Liang C-S, Goldscher DA, Freeman I, Kukin ML, Kinhal V, Udelson JE, Klapholz M, Gottlieb SS, Pearle D, Cody RJ, Gregory JJ, Kantrowitz NE, LeJemtel TH, Young ST, Lukas MA, Shusterman NH. Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure: the PRECISE trial. tiCirculation 1996;94:2793–2799.

    Google Scholar 

  88. Bristow MR, Gilbert EM, Abraham WT, Adams KF, Fowler MB, Hershberger RE, Kubo SH, Narahara KA, Ingersoll H, Krueger S, Young S, Shusterman N. Carvedilol Produces Dose-Related Improvements in Left Ventricular Function and Survival in Subjects With Chronic Heart Failure. Circulation 1996;94:2807–2816.

    Google Scholar 

  89. Magnusson Y, Wallukat G, Waagstein F, Hjalmarason A, Hoebeke J. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta 1-adrenoceptor with positive chronotropic effect. Circulation 1994;89:2760–7.

    Google Scholar 

  90. Wallukat G, Kayser A, Wollenberger A. The beta 1-adrenoceptor as antigen: functional aspects. Eur Heart J 1995;16 Suppl O:85–8.

    Google Scholar 

  91. Muller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Theodoridis V, Loebe M, Meyer R, Hetzer R. Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 1997;96:542–9.

    Google Scholar 

  92. Bristow MR, Roden RL, Lowes BD, Gilbert EM, Eichhorn EJ. The role of third-generation beta-blocking agents in chronic heart failure. Clin Cardiol 1998;21(suppl I):I-3–I-13.

    Google Scholar 

  93. Cleland JGF, Swedberg K. Carvedilol for heart failure, with care. Lancet 1996;347:1199–1201.

    Google Scholar 

  94. Kawada T, Ishibasi T, Nakazawa M, Satoh S, Imai S. Adrenoceptor-blocking and cardiohemodynamic effects of carvedilol in animals. J Cardiovasc Pharmacol 1990;16:147–53.

    Google Scholar 

  95. Yue T-L, Cheng H-Y, Lysko PG, McKenna PJ, Feuerstein R, Gu JL, Lysko KA, Davis LL, Feuerstein G. Carvedilol, a new vasodilator and beta-adrenoceptor antagonist, is an antioxidant and free radical scavenger. J Pharmacol Exp Ther 1992;263:92–8.

    Google Scholar 

  96. Gilbert EM, Abraham WT, Olsen S, Hattler B, White M, Mealy P, Larrabee P, Bristow MR. Comparative hemodynamic, left ventricular functional, and antiadrenergic effects of chronic treatment with metoprolol versus carvedilol in the failing heart. Circulation 1996;94:2817–25.

    Google Scholar 

  97. Kukin ML, Kalman J, Charney RH, Levy DK, Buchholz-Varley C, Ocampo ON, Eng C. Prospective, randomized comparison of effect of long-term treatment with metoprolol or carvedilol on symptoms, exercise, ejection fraction, and oxidative stress in heart failure. Circulation 1999;99:2645–2651.

    Google Scholar 

  98. Tung LH, Jackman G, Campbell B, Louis S, Iakovidis D, Louis WJ. Partial agonist activity of celiprolol. J Cardiovasc Pharmacol 1993;21:484–488.

    Google Scholar 

  99. Cockcroft JR, Chowienczyk PJ, Brett SE, Chen CPLH, Dupont AG, VanNueten L, Wooding SJ, Ritter JM. Nebivolol vasodilates human forearm vasculature: evidence for an L-arginine/NO-dependent mechanism. J Pharmacol Exp Therap 1995;274:1067–71.

    Google Scholar 

  100. Marwood JF, Stokes GS. Studies on the vasodilator actions of bucindolol in the rat. Clin Exp Pharmacol Physiol 1986;13:59–68.

    Google Scholar 

  101. Kendall MJ. Beta-blockers: a time for reappraisal. J Hum Hypertens 1998;12:803–6.

    Google Scholar 

  102. Böhm M, Schulz C, Schwinger RHG, Erdmann E. Positive inotropic effects due to partial agonistic activity of the ?-adrenoceptor antagonist celiprolol following amplification of cAMP formation in failing human myocardium. J Cardiovasc Pharmacol 1992;20:479–89.

    Google Scholar 

  103. Xamoterol in severe heart failure. The Xamoterol in Severe Heart Failure Study Group. Lancet 1990;336:1-6.

  104. Goldsmith RL, Bigger JT, Bloomfield DM, Krum H, Steinman RC, Sackner-Bernstein J, Packer M. Longterm carvedilol therapy increases para-sympathetic nervous system activity in chronic congestive heart failure. Am J Cardiol 1997;80:1101–4.

    Google Scholar 

  105. CIBIS Investigators and Committees. A randomised trial of ?-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation 1994;90:1765–73.

    Google Scholar 

  106. Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, Gilbert EM, Johnson MR, Goss FA, Hjalmarson Å for the Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy (MDC) trial. Lancet 1993;342:1441–1446.

    Google Scholar 

  107. Australia-New Zealand Heart Failure Research Collaborative Group. Effects of carvedilol, a vasodilator ?-blocker, in patients with congestive heart failure due to ischaemic heart disease. Circulation 1995;52:212–8.

    Google Scholar 

  108. Cowley AJ, Fullwood L, Stainer K, Hampton JR. Exercise tolerance in patients with heart failure — how should it be measured? Eur Heart J 1990;12:50–54.

    Google Scholar 

  109. Heidenreich PA, Lee TT, Massie BM. Effect of betablockade on mortality in patients with heart failure: a meta-analysis of randomised clinical trials. J Am Coll Cardiol 1997;30:27–34.

    Google Scholar 

  110. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, Dunkman WB, Jacobs W, Francis GS, Flohr KH, Goldman S, Cobb FR, Shah PM, Saunders R, Fletcher RD, Loeb HS, Hughes VC, Baker B. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration co-operative study. N Engl J Med 1986;314:1547–52.

    Google Scholar 

  111. Colucci WS, Williams GH, Braunwald E. Increased plasma norepinephrine levels during prazosin therapy for severe congestive heart failure. Ann Intern Med 1980;93:452–3.

    Google Scholar 

  112. Floras JS. Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 1993;4(suppl A):72A–84A.

    Google Scholar 

  113. Giles TD, Thomas MG, Quiroz AC, Rice JC. Acute and short-term effects of clonidine in heart failure. Angiology 1987;38:537–48.

    Google Scholar 

  114. Lang CC, Rayos GH, Chomsky DB, Wood AJJ, Wilson JR. Effect of sympathoinhibition on exercise performance in patients with heart failure. Circulation 1997;96:238–45.

    Google Scholar 

  115. Ernsberger P, Meeley MP, Mann JJ, Reis DJ. Clonidine binds to imidazole binding sites as well as ?2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 1987;134:1–13.

    Google Scholar 

  116. Ernsberger P, Meeley MP, Reis DJ. An endogenous substance with clonidine-like properties: selective binding to imidazole sites in the ventrolateral medulla. Brain Res 1988;441:309–18.

    Google Scholar 

  117. Plänitz V. Long-term experience with moxonidine in arterial hypertension. Acta Pharmacol Toxicol 1986;59(suppl 5):277.

    Google Scholar 

  118. Ramage AG, Wilkinson SJ. Evidence that different regional sympathetic outflows vary in their sensitivity to the sympathoinhibitory actions of putative 5-HT1A and ?-adrenoceptor agonists in anaesthetized cats. Br J Pharmacol 1989;98:1157–64.

    Google Scholar 

  119. Cohn JN. Presentation at Heart Failure' 99. Göteborg 5-8 June 1999.

  120. Zimmerman BG, Sybertz EJ, Wong PC. Interaction between the sympathetic and renin-angiotensin system. Hypertension 1984;2:581.

    Google Scholar 

  121. Hilgers KF, Veelken R, Rupprecht G, Reeh PW, Luft FC, Mann JF. Angiotensin II facilitates sympathetic transmission in rat hind limb circulation. Hypertension 1993;21:322.

    Google Scholar 

  122. Weber MA, Purdy RE. Catecholamine mediated constrictor effects of aldosterone on vascular smooth muscle. Life Sci 1982;30:2009–17.

    Google Scholar 

  123. Cody RJ, Franklin KW, Kluger J, Laragh JH. Sympathetic responsiveness and plasma norepinephrine during therapy of chronic congestive heart failure with captopril. Am J Med 1982;72:791–7.

    Google Scholar 

  124. Mettauer B, Rouleau JL, Bichet D, Kortas C, Manzini C, Tremblay G, Chatterjee K. Differential long-term intrarenal and neurohormonal effects of captopril and prazosin in patients with chronic heart failure. Circulation 1986;73:492–502.

    Google Scholar 

  125. Flapan AD, Nolan J, Neilson JM, Ewing DJ. Effect of captopril on cardiac parasympathetic activity in chronic cardiac failure secondary to coronary artery disease. Am J Cardiol 1992;69:532–5.

    Google Scholar 

  126. Pitt B, Segal R, Martinez FA, Meurers FA, Cowley AJ, Thomas I, Deedwania PC, Ney DE, Snavely DB, Chang PI, on behalf ofELITE study investigators. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study (ELITE). Lancet 1997;349:747–752.

    Google Scholar 

  127. Wang W. Chronic administration of aldosterone depresses baroreceptor reflex function in the dog. Hypertension 1994;24:571–5.

    Google Scholar 

  128. Barr CS, Lang CC, Hanson J, Arnott M, Kennedy N, Struthers AD. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995;76:1259–65.

    Google Scholar 

  129. MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res 1997;35:30–4.

    Google Scholar 

  130. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J, for the Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–17.

    Google Scholar 

  131. Kaye DM, Dart AM, Jennings GL, Esler MD. Antiadrenergic effect of chronic amiodarone therapy in human heart failure. JAm Coll Cardiol 1999;33:1553–9.

    Google Scholar 

  132. Patten RD, Kronenberg MW, Benedict CR, Udelson JE, Kinan D, Stewart D, Yusuf S, Smith JJ, Kilcoyne L, Dolan N, Edens TR, Metherall J, Konstam MA. Acute and long-term effects of the angiotensinconverting enzyme inhibitor, enalapril, on adrenergic activity and sensitivity during exercise in patients with left ventricular systolic dysfunction. Am Heart J 1997;134:37–43.

    Google Scholar 

  133. Yonemochi H, Yasunaga S, Teshima Y, Iwao T, Akiyoshi K, Nakagawa M, Saikawa T, Ito M. Mechanism of beta-adrenergic receptor upregulation induced by ACE inhibition in cultured neonatal rat cardiac myocytes: roles of bradykinin and protein kinase C. Circulation 1998;97:2268–73.

    Google Scholar 

  134. Bristow MR, Abraham WT. Anti-adrenergic effects of angiotensin converting enzyme inhibitors. Eur Heart J 1995;16 Suppl K:37–41.

    Google Scholar 

  135. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction: hemodynamic and metabolic effects. Circulation 1988;78:506–516.

    Google Scholar 

  136. Coats AJS, Adamopoulos S, Meyer T, Conway J, Sleight P. Physical training in chronic heart failure. Lancet 1990;335:63–66.

    Google Scholar 

  137. Coats AJS, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C, Conway J, Sleight P. Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 1992;85:2119–31.

    Google Scholar 

  138. Adamopoulos S, Ponikowski P, Cerqetani E, Piepoli M, Rosano G, Sleight P, Coats AJS. Circadian pattern of heart rate variability in chronic heart failure patients—effects of physical training. Eur Heart J 1995;16:1380–1386.

    Google Scholar 

  139. Gordon A, Tyni-Lenne R, Jansson E, Kaijser L, Theodorsson-Norheim E, Sylven C. Improved ventilation and decreased sympathetic stress in chronic heart failure patients following local endurance training with leg muscles. J Card Fail 1997;3:3–12.

    Google Scholar 

  140. Kiilavuori K, Toivonen L, Naveri H, Leinone H. Reversal of autonomic derangements by physical training in chronic heart failure assessed by heart rate variability. Eur Heart J 1995;16:490–5.

    Google Scholar 

  141. Adamopoulos S, Coats AJS, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK, Rajagopalan B. Physical training improves skeletal muscle metabolic abnormalities in patients with chronic heart failure. J Am Coll Cardiol 1993;23:1101–1106.

    Google Scholar 

  142. Stratton JR, Dunn JF, Adamopoulos S, Kemp GJ, Coats AJS, Rajagopalan B. Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J Appl Physiol 1994;76:1575–1582.

    Google Scholar 

  143. Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K, Riede U, Schlierf G, Kübler W, Schuler G. Physical training in patients with stable chronic heart failure: Effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 1995;25:1239–49.

    Google Scholar 

  144. Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, Adams V, Riede U, Schuler G. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 1997;29:1067–73.

    Google Scholar 

  145. Liu J-L, Irvine S, Reid IA, Zucker IH. Exercise training enhances baroreflex sensitivity in rabbits with heart failure: role of angiotensin II. Circulation 1999;98:I–210 [abstract].

    Google Scholar 

  146. Moore DP, Weston AR, Hughes JMB, Oakley CM, Cleland JGF. Effects of increased inspired oxygen concentrations on exercise performance in chronic heart failure. Lancet 1992;339:850–3.

    Google Scholar 

  147. Restrick LJ, Davies SW, Noone L, Wedzicha JA. Ambulatory oxygen in chronic heart failure. Lancet 1992;334:1192–3.

    Google Scholar 

  148. Chua TP, Harrington D, Ponikowski P, Webb-Peploe K, Poole-Wilson PA, Coats AJS. Effects of dihydrocodeine on chemosensitivity and exercise tolerance in patients with chronic heart failure. J Am Coll Cardiol 1997;29:147–52.

    Google Scholar 

  149. Leier CV. Nitrate tolerance. Am Heart J 1985;110:224–32.

    Google Scholar 

  150. Tsutamoto T, Kinoshita M, Nakae I, Maeda Y, Wada A, Yabe T, Horie H. Absence of hemodynamic tolerance to nicorandil in patients with severe congestive heart failure. Am Heart J 1994;127:866–73.

    Google Scholar 

  151. Ribner HS, Plucinski DA, Hseieh AM, Bresnahan D, Molteni A, Askenazi J, Lesch M. Acute effects of digoxin on total systemic vascular resistance in congestive heart failure due to dilated cardiomyopathy. Am J Cardiol 1985;56:896–904.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, A.L., Cleland, J.G. The Control of Adrenergic Function in Heart Failure: Therapeutic Intervention. Heart Fail Rev 5, 101–114 (2000). https://doi.org/10.1023/A:1009854325711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009854325711

Keywords

Navigation