Skip to main content
Log in

Mitochondrial Function in Heart Failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Experimental and clinical studies have detected an impaired respiratory function of cardiomyocyte mitochondria in heart failure. Since the reasons for heart failure are manifold, so is mitochondrial involvement. Characteristics of mitochondrial participation in heart failure are as follows: (1) Inherited or acquired mutations of the mitochondrial or nuclear genome cause defects in different mitochondrial components, eventually resulting in cardiomyopathy. (2a) Oxidative stress depresses mitochondrial function. This occurs slowly and inevitably in the 'physiological' process of ageing, but rapidly in “pathophysiologic” conditions such as post-ischemic reperfusion. (2b) Free radicals damage mitochondrial DNA, proteins, and membrane lipids. Interactions between altered membrane lipids, respiratory chain components, and carrier proteins further enhance mitochondrial dysfunction. (3) Mitochondrial energy transfer via the adenine nucleotide translocator (ANT) and the mitochondrial creatine kinase is disturbed in heart failure. Especially an altered expression and a functional impairment of the ANT seems to be involved in the disturbed energy metabolism of dilated and inflammatory cardiomyopathy. (4) Mitochondria are mainly involved in the initiation and modulation of the process of programmed cell death (apoptosis). (5) Triggered by a variety of conditions during cellular dysfunction mitochondrial membrane permeability suddenly increases, followed by the collapse of the membrane potential, thus abolishing energy production and further aggravating cellular damage. (6a) Increased levels of cytokines, in particular TNF-α, in heart failure and cardiomyopathy modulate mitochondrial function. (6b) Cytokines activate the generation of nitric oxide and heat shock proteins, thus further depressing or preserving mitochondrial activity.

These main mechanisms of active and passive participation of mitochondria in heart failure are reviewed in this article. At present, most of them are not completely resolved and some are still hypothetical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Korff RW. Metabolic characteristics of isolated rabbit heart mitochondria. J Biol Chem 1965;240:1351–1358.

    Google Scholar 

  2. Schwartz A, Lee KS. Study of heart mitochondria and glycolytic metabolism in experimentally induced cardiac failure. Circ Res 1962;10:321–332.

    Google Scholar 

  3. Plaut GWE, Gertler MM. Oxidative phosphorylation studies in normal and experimentally produced congestive heart failure in the guinea pig: A comparison. Ann NY Acad Sci 1959;72:515–517.

    Google Scholar 

  4. Szekeres L, Schein M. Cell metabolism of the overloaded mammalian heart in situ. Cardiologica 1959;34:18–27.

    Google Scholar 

  5. Wollenberger A, Kleitke B, Raabe G. Some metabolic characteristics of mitochondria from chronically overloaded hearts. Exp Molec Path 1963;2:251–260.

    Google Scholar 

  6. Argus MF, Arcos JC, Sardesai VM, Overby JL. Oxidative rates and phosphorylation in sarcosomes from experimentally-induced failing rat heart. Proc Soc Exp Biol Med 1964;117:380–383.

    Google Scholar 

  7. Olson RE. Abnormalities of myocardial metabolism. Circ Res 1964;15(Suppl II):109–119.

    Google Scholar 

  8. Sobel BE, Spann JF Jr, Pool PE, Sonnenblick EH, Braunwald E. Normal oxidative phosphorylation in mitochondria from failing heart. Circ Res 1967;21:355–363.

    Google Scholar 

  9. Schwartz A, Lindenmayer GE, Harigaya S. Respiratory control and calcium transport in heart mitochondria from the cardiomyopathic Syrian hamster. Trans NY Acad Sci 1968;30:951–954.

    Google Scholar 

  10. Kapelko VI, Veksler VI, Popovich MI, Ventura-Clapier R. Energy-linked functional alterations in experimental cardiomyopathies. Am J Physiol 1991;261(Suppl/Oct):39–44.

    Google Scholar 

  11. Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1998;30: 1757–1762.

    Google Scholar 

  12. Unverferth DV, Magorien RD, Kolibash AJ, Lewis RP, Lykens M, Altschuld RA, Baba N, Leier CV. Biochemical and histologic correlates of ventricular end-diastolic pressure. Int J Cardiol 1981;1:133–142. fi

    Google Scholar 

  13. Bashore TM, Magorien DJ, Letterio J, Shaffer P, Unverferth DV. Histologic and biochemical correlates of left ventricular chamber dynamics in man. J Am Coll Cardiol 1987;9: 734–742.

    Google Scholar 

  14. Rajagopalan B, Blackledge MJ, McKenna WJ, Bolas N, Radda GK. Measurement of phosphocreatine to ATP ratio in normal and diseased human heart by 31Pmagnetic resonance spectroscopy using the reotating frame-depth selection technique. Ann NY Acad Sci 1987;508:321–332.

    Google Scholar 

  15. Schaefer S, Gober JR, Schwartz GG, Twieg DB, Weiner MW, Massie B. In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease. Am J Cardiol 1990;65:1154–1161.

    Google Scholar 

  16. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 1991;122: 795–801.

    Google Scholar 

  17. Neubauer S, Krahe T, Schindler R, Hillenbrand H, Entzeroth C, Kromer EP, Riegger AJG, Lackner K, Ertl G. Cardiac 31P-MR spectroscopy in patients with coronary artery disease and dilative cardiomyopathy. Circulation 1991; 84,4:II–379.

    Google Scholar 

  18. Chidsey CA, Weinbach EC, Pool PE, Morrow AG. Biochemical studies of energy production in the failing human heart. J Clin Invest 1966;45:40–50.

    Google Scholar 

  19. Lindenmayer GE, Sordahl LA, Harigaya S, Allen JC, Besch HR, Schwartz A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. Am J Cardiol 1971;27: 277–284.

    Google Scholar 

  20. Sordahl LA, Liddicoat JE Jr, Diethrich EB, Silver B, De Bakey ME, Schwartz A. Respiratory activity of mitochondria from isolated human and dog hearts maintained in a portable preservation chamber. J Mol Cell Cardiol 1970; 1:379–388.

    Google Scholar 

  21. Shoffner JM, Wallace DC. Oxidative phosphorylation disease: disorder of two genomes. In: Harris H, Hirschhorn K, eds. Advances in Human Genetics. New York: Plenum Press 1990;19:267–330.

    Google Scholar 

  22. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AHJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457–465.

    Google Scholar 

  23. Wallace DC. Mitochondrial genetics: A paradigm for aging and degenerative disease. Science 1992;256:628–632.

    Google Scholar 

  24. Marin-Garcia J, Goldenthal MJ. Cardiomyopathy and abnormalmitochondrial function. Cardiovasc Res 1994;28:456–463.

    Google Scholar 

  25. Baandrup U, Florio LA, Rehahn M, Richardson PJ, Olsen EGJ. Critical analysis of endomyocardial biopsies from patients suspected of having cardiomyopathy. II. Comparison of histology and clinical/hemodynamic information. Br Heart J 1981;45:487–493.

    Google Scholar 

  26. Schwarz F, Mall G, Zebe H, Blickle J, Derks H, Manley J, Kubler W. Quantitative morphologic findings in the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol 1983;51:501–506.

    Google Scholar 

  27. Maurer I, Zierz S. Myocardial respiratory chain enzyme activities in idiopathic dilated cardiomyopathy, and comparison with those in atherosclerotic coronary artery disease and valvular aortic stenosis. Am J Cardiol 1993;72:428–433.

    Google Scholar 

  28. Rustin P, Lebidois J, Chretien D, Bourgeron T, Piechaud JF, Rotig A, Munnich A, Sidi D. Endomyocardial biopsies for early detection of mitochondrial disorders in hypertrophic cardiomyopathies. J Pediatr 1994;124:224–228.

    Google Scholar 

  29. Hart Z, Chang C, DiMauro S, Farooki Q, Ayyar R. Muscle carnitine deficiency and fatal cardiomyopathy. Neurology 1978;28:147–151.

    Google Scholar 

  30. Tripp ME, Katcher ML, Peters HA. Systemic carnitine deficiency presenting as a familial endocardial fibroelastosis. A treatable cardiomyopathy. N Engl J Med 305981: 385–390.

  31. Waber LJ, Valle D, Neill C, DiMauro S, Shug A. Carnitine deficiency presenting as familial cardiomyopathy: A treatable defect in carnitine transport. J Pediatr 1982;101: 700–705.

    Google Scholar 

  32. Matsuishi T, Hirata K, Terasawa K, Kato H, Yoshino M, Ohtaki E, Hirose F, Nonaka I, Sugiyama N, Ohta K. Successful carnitine treatment in two siblings having lipid storage myopathy with hypertrophic cardiomyopathy. Neuropediatrics 1985;16:6–12.

    Google Scholar 

  33. Zeviani M, Gellera C, Antozzi C, Rimoldi M, Morandi L, Villani F, Tiranti U, Di Donato S. Maternally inherited myopathy and cardiomyopathy: Association with mutation in mitochondrial DNA tRNA(LEU)(UUR). Lancet 1991;338: 143–147.

    Google Scholar 

  34. Tanaka M, Ino H, Ohno K, Hattori K, Sato W, Ozawa T, Tanaka T, Itoyama S. Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 1990;336:1452.

    Google Scholar 

  35. Ozawa T, Tanaka M, Sugiyama S, Hattori K, Ito T, Ohno K, Takahashi A, Sato W, Takada G, Mayumi B, Yamamoto K, Adachi K, Koga Y, Toshima H. Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochem Biophys Res Commun 1990;170:830–836.

    Google Scholar 

  36. Morgan-Hughes JA, Hayes DJ, Cooper M, Clark JB. Mitochondrial myopathies: Deficiencies localized to complex I and complex III of the mitochondrial respiratory chain. Biochem Soc Trans 1985;13:648–651.

    Google Scholar 

  37. Channer KS, Channer JL, Campbell MJ, Rees JR. Cardiomyopathy in Kearns-Sayre syndrome. Br Heart J 1988;59:486–490.

    Google Scholar 

  38. Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun 1992;189: 979–985.

    Google Scholar 

  39. Sciacco M, Bonilla E, Schoen EA, Di Mauro S, Moraes CT. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 1994;3:13–19.

    Google Scholar 

  40. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: Implications for carcinogenesis and aging? Free Rad Biol Med 1990;8:523–539.

    Google Scholar 

  41. Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 1999;26:463–471.

    Google Scholar 

  42. McMurray J, McLay J, Chopra M, Bridges A, Belch JJ. Evidence for enhanced free radical activity in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1990;65:1261–1262.

    Google Scholar 

  43. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ. Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 1993;14:1493–1498.

    Google Scholar 

  44. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy AM. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 1998;31:1352–1356.

    Google Scholar 

  45. Lochner A, Niekerk IV, Kotze JCN. Mitochondrial Acyl-CoA, adenine nucleotide translocase activity and oxidative phosphorylation in myocardial ischemia. J Mol Cell Cardiol 1981;13:991–997.

    Google Scholar 

  46. Rouslin W. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am J Physiol 1983;244: H743–H748.

    Google Scholar 

  47. Arroyo CM, Kramer JH, Leiboff RH, Mergner GW, Dickens BF, Weglicki WB. Spin trapping of oxygen and carbon-centered free radicals in ischemic caninemyocardium. Free Rad Biol Med 1987;3:313–316.

    Google Scholar 

  48. McCord JM. Free Radicals and myocardial ischemia: Overview and outlook. Free Rad Biol Med 1988;4:9–14.

    Google Scholar 

  49. Otani H, Tanaka H, Inoue T. In vitro study of contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. Circ Res 1984;55:168–175.

    Google Scholar 

  50. Dhalla AK, Signal PK. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J Physiol 1994;266: H1280–H1285.

    Google Scholar 

  51. Hill MF, Signal PK. Antioxidant and oxidative stress during heart failure subsequent to myocardial infarcteion in rats. Am J Pathol 1996;148:291–300.

    Google Scholar 

  52. Corral-Debrinsky M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC. Hypoxia is asociated with mitochondrial DNA damage and gene induction. JAMA 1991;266: 1812–1816.

    Google Scholar 

  53. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1995;11: 376–381.

    Google Scholar 

  54. Skulachev VP. Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 1998;423:275–280.

    Google Scholar 

  55. Harman D. The aging process. Proc Natl Acad Sci USA 1981;78:7124.

    Google Scholar 

  56. Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 1990;87:4533–4537.

    Google Scholar 

  57. Stadtman ER. Protein oxidation and aging. Science 1992;257:1220–1224.

    Google Scholar 

  58. Marnett LJ, Hurd HK, Hollstein MC, Levin DE, Esterbauer H, Ames BN. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat Res 1985;148:25–34.

    Google Scholar 

  59. Papa S, Skulachev VP. Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 1997;174: 305–319.

    Google Scholar 

  60. Ji LL, Dillon D, Wu E. Myocardial aging: Antioxidant enzyme systems and related biochemical properties. Am J Physiol 1991;261:R386–R392.

    Google Scholar 

  61. Beyer RE, Burnett B-A, Cartwright KJ, Edington DW, Falzon MJ, Kreitman KR, Kuhn TW, Ramp BJ, Rhee SYS, Rosenwasser MJ, Stein M, An LC. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech Ageing Dev 1985;32:267–281.

    Google Scholar 

  62. Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Physiol 1977;232:E258–E262.

    Google Scholar 

  63. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994;91:10771–10778.

    Google Scholar 

  64. Lee JC, Karpeles LM, Downing SE. Age-related changes of cardiac performance in male rats. Am J Physiol 1972;222: 432–438.

    Google Scholar 

  65. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991;68: 1560–1568.

    Google Scholar 

  66. Hachamovitch R, Wicker P, Capasso J, Anversa P. Alterations of coronary blood flow and reserve with aging in Fischer 344 rats. Am J Physiol 1989;256:H66–H73.

    Google Scholar 

  67. Hudson EK, Tsuchiya N, Hansford RG. Age-associated changes in mitochondrial mRNA expression and translation in theWistar rat heart. Mech Ageing Dev 1998;103:179–193.

    Google Scholar 

  68. Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ. Mitochondrial gene expression in rat heart and liver during growth and development. Biochem Cell Biol 1997;75: 137–142.

    Google Scholar 

  69. Andreu AL, Arbos MA, Perez-Martos A, Lopez-Perez MJ, Asin J, Lopez N, Montoya J, Schwartz S. Reduced mitochon-drial DNA transcription in senescent rat heart. Biochem Biophys Res Commun 1998;252:577–581.

    Google Scholar 

  70. Clayton DA, Doda JN, Friedberg EC. The absence of a pyrimidine repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 1974;71:2777–2781.

    Google Scholar 

  71. Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988;85:6465–6467.

    Google Scholar 

  72. Linnane A, Baumer A, Maxwell R, Preston H, Zhang C, Marzuki S. Mitochondrial gene mutation: The ageing process and degenerative disease. Biochem Int 1990;22:1067– 1076.

    Google Scholar 

  73. Cortopassi G, Shibata D, Soong N, Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial DNA is aging human tissue. Proc Natl Acad Sci USA 1992;89: 7340–7344.

    Google Scholar 

  74. Hattori K, Tanaka M, Sugiyama S, Obayashi T, Ito T, Satake T, Hanaki Y, Asai J, Nagano M, Ozawa T. Age-dependent increase in deleted mitochondrial DNA in the human heart: Possible contributory factor to presbycadia. Am Heart J 1991;121:1735–1742.

    Google Scholar 

  75. Yoneda M, Katsumata K, Hayakawa M, Tanaka M, Ozawa T. Oxygen stress induces an apoptotic death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 1995;209:723–729.

    Google Scholar 

  76. Lewin MB, Timiras PS. Lipid changes with aging in cardiac mitochondrial membranes. Mech Ageing Dev 1984;24: 343–351.

    Google Scholar 

  77. Clandinin MT, Innis SM. Does mitochondrial ATP synthesis decline as a function of change in the membrane environment with aging? Mech Ageing Dev 1983;22:205–208.

    Google Scholar 

  78. Pieri C. Food restriction slows down age-related changes in cell membrane parameters. Ann NY Acad Sci 1991;621: 353–362.

    Google Scholar 

  79. Laganiere S, Yu BP. Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 1993;39:7–18.

    Google Scholar 

  80. Choe MC, Jackson C, Yu BP. Lipid peroxidation contributes to age-related membrane rigidity. Free Radical Biol Med 1995;18:977–984.

    Google Scholar 

  81. Choudahary AK, Nokubo M, Reddy RG, Yoola SN, Morrow JD, Blair IA, Marnett LJ. Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 1994;265:1580–1582.

    Google Scholar 

  82. Kristal B, Chen JJ, Yu BP. Sensitivity of mitochondrial transcription to different free radical species. Free Radical Biol Med 1994;16:323–329.

    Google Scholar 

  83. Lucas DT, Szweda LI. Cardiac reperfusion injury: Aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 1998;95:510–514

    Google Scholar 

  84. Hoch FL. Cardiolopins and biomembrane function. Biochim Biophys Acta 1992;1113:71–133.

    Google Scholar 

  85. Robinson NC. Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 1993;25:153–163.

    Google Scholar 

  86. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: Role of cardiolipin. FEBS Letters 1997;406:136–138.

    Google Scholar 

  87. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Age dependent impairment ofmitochondrial function in rat heart tissue. Effect of pharmacological agents. Ann NY Acad Sci 1996;768:252–263.

    Google Scholar 

  88. Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E. Peroxidative damage to cardiac mitochondria: Cytochrome oxidase and cardiolipin alterations. FEBS Lett 1998;424: 155–158.

    Google Scholar 

  89. Wittels B, Spann JF. Defective lipid metabolism in the failing heart. J Clin Invest 1968;47:1787–1794.

    Google Scholar 

  90. Schönekess BO, Allard MF, Lopaschuk GD. Propionyl Lcarnitine improvement of hypertrophied rat heart function is associated with an increase in cardiac efficiency. Eur J Pharmacol 1995;286:155–166.

    Google Scholar 

  91. Gadaleta MN, Petruzzella V, Renis M, Fracasso F, Cantatore P. Reduced transcription of mitochondrial DNAin the senescent rat. Tissue dependence and effect of L-carnitine. Eur J Biochem 1990;187:501–506.

    Google Scholar 

  92. Dörner A, Pauschinger M, Badorff A, Noutsias M, Giessen S, Schulze K, Bilger J, Rauch U, Schultheiss H-P. Tissuespecifi c transcription pattern of the adenine nucleotide translocase isoforms in humans. FEBS Lett 1997;414: 2258–2262.

    Google Scholar 

  93. Dörner A, Schulze K, Rauch U, Schultheiss H-P. Adenine nucleotide translocator in dilated cardiomyopathy: Pathophysiological alterations in expression and function. Mol Cell Biochem 1997;174:261–269.

    Google Scholar 

  94. Schultheiss H-P. Dysfunction of the ADP/ATP carrier as a causative factor for the disturbance of the myocardial energy metabolism in dilated cardiomyopathy. Basic Res Cardiol 1992;87:311–320.

    Google Scholar 

  95. Sylven C, Lin L, Jansson E, Sotonyi P, Fu LX, Waagstein F, Hjalmarsson A, Marcus C, Bronnegard M. Ventricular adanine nucleotide translocator mRNA is upregulated in dilated cardiomyopathy. Cardiovasc Res 1993;27:1295–1297.

    Google Scholar 

  96. Gawaz M, Douglas MG, Klingenberg M. Structure-function studies of adenine nucleotide transport in mitochondria. II. Biochemical analysis of distinct AAC1 and AAC2 in yeast. J Biol Chem 1990;265:14202–14208.

    Google Scholar 

  97. Dörner A, Olesch M, Giessen S, Pauschinger M, Schultheiss H-P. Adenine nucleotide translocase isoform transcription in various tissues in the rat. Biochim Biophys Acta 1999;1417: 16–24.

    Google Scholar 

  98. Kühl U, Noutsias M, Seeberg B, Schannawell M, Lars B, Schultheiss H-P, Strauer BE. Chronic in_ammation in dilated cardiomyopathy. Heart Failure 1994;9:231–245.

    Google Scholar 

  99. Schultheiss HP, Schulze K, Dörner A. Significance of the adenine nucleotide translocator in the pathogenesis of viral heart disease. Mol Cell Biochem 1996;163/164:319–327.

    Google Scholar 

  100. Schulze K, Witzenbichler B, Christmann C, Schultheiss H-P. Disturbance of myocardial energy metabolism in experimental virus myocarditis by antibodies against the adenine nucleotide translocator. Cardiovasc Res 1999;44:91–100.

    Google Scholar 

  101. Graham BH, Waymire KG, Cottrell B, Trounce IA, Mac Gregor GR, Wallace DC. A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 1997;16:226–234.

    Google Scholar 

  102. Wessely R, Henke A, Zell R, Kandolf R, Knowlton KU. Low-level expression of a mutant coxsackieviral cDNA induces a myopathic effect in culture: An approach to the study of enteroviral persistence in cardiac myocytes. Circulation 1998;98:450–457.

    Google Scholar 

  103. Schulze K, Becker BF, Schultheiss HP. Antibodies to the ADP/ATP carrier, an autoantigen in myocarditis and dilated cardiomyopathy, penetrate into myocardial cells and disturb energy metabolism in vivo. Circ Res 1989;64: 179–192.

    Google Scholar 

  104. Schultheiss HP, Schulze K, Schauer R, Witzenbichler B, Strauer BE. Antibody-mediated imbalance of myocardial energy metabolism—a causal factor of cardiac failure? Circ Res 1995;76:64–72.

    Google Scholar 

  105. Khuchua ZA, Ventura-Clapier R, Kuznetsov AV, Grishin MN, Saks VA. Alterations in the creatine kinase system in the myocardium of cardiomyopathic hamsters. Biochem Biophys Res Commun 1989;165:748–757.

    Google Scholar 

  106. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS. Decreased energy reserve in an animal model of dilated cardiomyopathy. Circ Res 1996;78:893–902.

    Google Scholar 

  107. Popovich M, Kostin S, Branishte T, Kobets V, Kapelko V. Cellular hypertrophy in cardiomyopathic patients is associated with lower creatine-stimulated mitochondrial respiration. Mol Cell Biochem 1995;143:1–5.

    Google Scholar 

  108. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks VA, Pessina AC, Allen PD. Creatine kinase system in failing and nonfailing human myokardium. Circulation 1996;94:1894–1901.

    Google Scholar 

  109. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biologic phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.

    Google Scholar 

  110. Hetts SW. To die or not to die. An overview of apoptosis and its role in disease. JAMA 1998;279:300–307.

    Google Scholar 

  111. Haanen C, Vermes I. Apoptosis, programmed cell death in fetal development. Eur J Obstet Gynecol Reprod Biol 1996;64:129–133.

    Google Scholar 

  112. Majno G, Joris I. Apoptosis, oncosis, and necrosis: An overview of cell death. Am J Pathol 1995;146:3–15.

    Google Scholar 

  113. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462.

    Google Scholar 

  114. Kroemer G, Petit PX, Zamzami N, Vayssière J-L, Mignotte B. The biochemistry of apoptosis. FASEB J 1995;9:1277–1287.

    Google Scholar 

  115. Steller H. Mechanisms and genes of cellular suicide. Science 1995;267:1445–1449.

    Google Scholar 

  116. Williams GT, Smith CA. Molecular regulation of apoptosis: Genetic controls on cell death. Cell 1993;74:777–779.

    Google Scholar 

  117. Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell 1994;76:777–779.

    Google Scholar 

  118. Chinnaian AM, O'Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9: A molecular frame work for cell death. Science 1997;275:1122–1126.

    Google Scholar 

  119. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W. Nitahara JA, Quaini E, Di Loreto C, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Google Scholar 

  120. Narula J, Haider N, Virmani R, Di Salvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182–1189.

    Google Scholar 

  121. Narula J, Hajjar RJ, Dec GW. Apoptosis in the failing heart. Cardiol Clin 1998;16:691–710.

    Google Scholar 

  122. Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997;80:15L–25L.

    Google Scholar 

  123. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621–1628.

    Google Scholar 

  124. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405–413.

    Google Scholar 

  125. Yang Y, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997;275:1129–1132.

    Google Scholar 

  126. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: A primary site for bcl-2 regulation of apoptosis. Science 275+132–1136.

  127. Vaux DL. CED-4—the third horseman of apoptosis. Cell 1997;90:389–390.

    Google Scholar 

  128. Reed JC. Double identity for proteins of the bcl-2 family. Nature 1997;387:773–776.

    Google Scholar 

  129. Gajewski TF, Thompson CB. Apoptosis meets signal transduction: Elimination of a BAD in fluence. Cell 1996;87:589–592.

    Google Scholar 

  130. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere J-L, Petit PX, Kroemer G. Reduction in mitochndrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995;181: 1661–1672.

    Google Scholar 

  131. Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997;18:44–51.

    Google Scholar 

  132. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997;275:1129–1132.

    Google Scholar 

  133. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: A primary site fore Bcl-2 regulation of apoptosis. Science 1997;275: 1132–1136.

    Google Scholar 

  134. Tsuyimoto Y. Role of Bcl-2 family proteins in apoptosis: Apoptosomes or mitochondria? Genes Cells 1998;3:697–707.

    Google Scholar 

  135. Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calciumtreated mitochondria. J Biol Chem 1976;251:5069–5077.

    Google Scholar 

  136. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 1979;195:453–459.

    Google Scholar 

  137. Haworth RA, Hunter DR. The Ca21-induced membrane transition in mitochondria. II. The nature of the Ca2+ trigger site. Arch Biochem Biophys 1979;195:460–467.

    Google Scholar 

  138. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 1979;195:468–477.

    Google Scholar 

  139. Haworth RA, Hunter DR. Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol 1980;54:231–236.

    Google Scholar 

  140. Crompton M, Costi A. A heart mitochondrial pore of possible relevance to reperfusion-induced injury. Biochem J 1990; 266:33–39.

    Google Scholar 

  141. Halestrap AP, Davidson AM. Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin in probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 1990;268:153–160.

    Google Scholar 

  142. Brustovetsky N, Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry 1996;35:8483–8488.

    Google Scholar 

  143. Fontaine E, Eriksson O, Ichas F, Bernardi P. Regulation of the permeability transition pore in skeletal muscle mito-chondria. Modulation by electron _ow through the respiratory chain complex I. J Biol Chem 1998;273–2662–12668.

  144. Beutner G, Rück A, Riede B, Welte W, Brdiczka D. Complexes between kinases, mitochondrial porin, and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 1996;396:189–195.

    Google Scholar 

  145. O'Gorman E, Beutner G, Dolder M, Koretsky AP, Brdiczka D, Wallimann T. The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 1997;414: 253–257.

    Google Scholar 

  146. Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of the Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 1988;255:357–360.

    Google Scholar 

  147. Bernardi P. Modulation of the mitochondrial cyclosporin Asensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 1992;267:8834–8839.

    Google Scholar 

  148. Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995;1241:139–176.

    Google Scholar 

  149. Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 1997;272:3346–3354.

    Google Scholar 

  150. Halestrap AP. Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7—Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 1991;278:715–719.

    Google Scholar 

  151. Nieminen A-L, Byrne AM, Herman B, Lemasters JJ. Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol 1997;272:C1286–C1294.

    Google Scholar 

  152. Bradham CA, Qian T, Brenner DA, Lemasters JJ. Tumor necrosis factor α (TNFα)-mediated apoptosis in Iκ-AA-sensitized hepatocytes requires the mitochondrial permeability transition. Mol Biol Cell 1997;8:32a.

    Google Scholar 

  153. Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia-reperfusion induced damage in isolated rat hearts. J Mol Cell Cardiol 1993;25:1461–1469.

    Google Scholar 

  154. Nazareth W, Yafei N, Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin-A. J Mol Cell Cardiol 1991;23:1351–1354.

    Google Scholar 

  155. Fournier N, Ducet G, Crevat A. Action of cyclosporin on mitochondrial calcium fluxes. J Bioenerg Biomembr 1987; 19:297–303.

    Google Scholar 

  156. Broekemeier KM, Dempsey ME, Pfeiffer DR. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 1989;264:7826–7830.

    Google Scholar 

  157. Nicolli A, Basso E, Petronelli V, Wenger RM, Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, a cyclosporin A-sensitive channel.J Biol Chem 1996; 271:2185–2195.

    Google Scholar 

  158. Kerr PM, Suleiman MS, Halestrap AP. Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 1999;276: H496–H502.

    Google Scholar 

  159. Ichas F, Mazat JP. From calcium signaling to cell death: Two conformations for the mitochondrial permeability transition pore. Switching from low-to high-conductance state. Biochim Biophys Acta 1998;1366:33–50.

    Google Scholar 

  160. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulationg levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241.

    Google Scholar 

  161. Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 1994;72:561–566.

    Google Scholar 

  162. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing heart. Circulation 1996;93:704–711.

    Google Scholar 

  163. Hegewisch S, Weh HJ, Hossfeld DK. TNF-alpha induced cardiomyopathy. Lancet 1990;335:294–295.

    Google Scholar 

  164. Kapadia SR, Oral H, Lee J, Nakano M, Taffet GE, Mann DL. Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ Res 1997;81:187–195.

    Google Scholar 

  165. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Cir Res 1997;81:627–635.

    Google Scholar 

  166. Bozkurt B, Kribbs SB, Clubb FJ, Michael DH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL. Pathophysiologically relevant concentrations of tumor necrosis factor-a promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998;97:1382–1391.

    Google Scholar 

  167. Kruit WH, Punt KJ, Goey SH, de Mulder PH, van Hoogenhuyze DC, Henzen-Logmans SC, Stoter G. Cardiotoxicity as a dose-limiting factor in a schedule of high dose bolus therapy with interleukin-2 and alpha-interferon. An unexpectedly frequent complication. Cancer 1994;74: 2850–2856.

    Google Scholar 

  168. Zell R, Geck P, Werdan K, Boekstegers P. TNF-a and IL-a inhibit both pyruvate dehydrogenase activity and mitochondrial function in cardiomyocytes: Evidence for primary impairment of mitochondrial function. Mol Cell Biochem 1997;177:61–67.

    Google Scholar 

  169. Schulze-Ostroff K, Bakker AC, Vanhaesebroeck B, Beyaert R, Jacob WA, Fiers W. Cytosolic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 1992;267:5317–5323.

    Google Scholar 

  170. Jia L, Kelsey SM, Grahn MF, Jiang XR, Newland AC. Increased activity and sensitivity of mitochondrial respiratory enzymes to tumor necrosis factor alpha-mediated inhibition is assoxiated with increased cytotoxicity in drug-resistant leucemic cell lines. Blood 1996;87:2401–2410.

    Google Scholar 

  171. Hennet T, Richter C, Peterhans E. Tumour necrosis factoralpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J 1993;289:587–592.

    Google Scholar 

  172. Goossens V, Grooten J, De Vos K, Fiers W. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc Natl Acad Sci USA 1995;92:8115–8119.

    Google Scholar 

  173. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77:325–328.

    Google Scholar 

  174. Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996 274°855–1859.

  175. Gudz TI, Tserng KY, Hoppel CL. Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 1997;272:24154–24158.

    Google Scholar 

  176. Amarante-Mendes GP, Naekyung KC, Liu L, Huang Y, Perkins CI, Green DR, Bhalla K. Bcr-Abl exerts ist antiapoptotic effect against diverse apoptotic stimuli through blockade of mitochondrial release of cytochrome C and activation of caspase-3. Blood 1998;91:1700–1705.

    Google Scholar 

  177. Eddy LJ, Goeddel DV, Wong GH. Tumor necrosis factor-alpha pretreatment is protective in a rat model of myocardial ischemia-reperfusion injury. Biochem Biophys Res Commun 1992;184:1056–1059.

    Google Scholar 

  178. Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994;78:915–918.

    Google Scholar 

  179. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 1992;257:387–389.

    Google Scholar 

  180. Barry WH. Mechanisms of immune-mediated myocyte-injury. Circulation 1994;89:2421–2432.

    Google Scholar 

  181. Kinugawa K, Takahashi T, Kohmoto O, Yao A, Aoyagi T, Momomura S, Hirata Y, Serizawa T. Nitric oxide-mediated effects of interleukin-6 on [Ca21]i and cell concentration in cultured chick ventricularmyocytes. Circ Res 1994;75:285–292.

    Google Scholar 

  182. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH. Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 1994;75:1086–1095.

    Google Scholar 

  183. Shah AM, Spurgeon HA, Sollot SJ, Talo A, Lakatta EG. 8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. Circ Res 1994;74:970–978.

    Google Scholar 

  184. Oddis CV, Finkel MS. Cytokine-stimulated nitric oxide production inhibits mitochondrial activity in cardiac myocytes. Biochem Biophys Res Commun 1995;213:1002–1009.

    Google Scholar 

  185. Granger DL, Lehninger AL. Sites of inhibition of mitochondrial electron transport in macrophage-induced neoplastic cells. J Cell Biol 1982;95:527–535.

    Google Scholar 

  186. Drapier JC, Hibbs JB, Murine cytotoxic macrophages inhibit acotinase in tumor cells: Inhibition involves the ironsulfur prosthetic group and is reversible. J Clin Invest 1986;78:790–797.

    Google Scholar 

  187. O'Murchu B, Miller VM, Perrella MA, Burnett JC. Increased production of nitric oxide in coronary arteries during congestive heart failure. J Clin Invest 1994;93:165–171.

    Google Scholar 

  188. Xie Y-W, Shen W, Zhao G, Xu X, Wolin MS, Hintze TH. Role of endothelium-derived nitric oxide in themodulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 1996;79:381–387.

    Google Scholar 

  189. Knowlton AA, Kapadia S, Torre-Amione G, Durand JB, Bies R, Young J, Mann DL. Differential expression of heat shock proteins in normal and failing heart. J Mol Cell Cardiol 1998;30:811–818.

    Google Scholar 

  190. Knowlton AA. Heat-shock proteins, stress, and the heart. Ann NY Acad Sci 1994;723:128–136.

    Google Scholar 

  191. Agsteribbe E, Huckriede A, Veenhuis M, Ruiters MHJ, Niezen-Koning KE, Skjeldal OH, Skullerud K, Gupta RS, Hallberg R, van Diggelen OP, Scholte HR. A fatal, systemic mitochondrial disease with decrease mitochondrial enzyme activities, abnormal ultrastructure of the mitochondria and deficiency of heat shock protein 60. Biochem Biophys Res Commun 1993;193:146–154.

    Google Scholar 

  192. Rauch U, Schulze K, Witzenbichler B, Schultheiss HP. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemiamay contribute to early contractile failure. CircRes 1994;75:760–769.

    Google Scholar 

  193. Noll T, Koop A, Piper HM. Mitochondrial ATP-synthase activity in cardiomyocytes after aerobic-anaerobic metabolic transition. Am J Physiol 1992;262:C1297–C1303.

    Google Scholar 

  194. Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG. Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardiol 1985;17:186–198.

    Google Scholar 

  195. Rouslin W. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis. Am J Physiol 1983;244:H743–H748.

    Google Scholar 

  196. Pauly DF, Yoon SB, McMillin JB. Carnitine-acylcarnitine translocase in ischemia: Evidence for sulfhydryl modification. Am J Physiol 1987;253:H1557–H1565.

    Google Scholar 

  197. Shug AL, Shrago E, Bittar N, Folts JD, Roke JR. Acyl CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol 1975;228:689–692.

    Google Scholar 

  198. Bond JM, Chacon E, Herman B, Lemasters JJ. Intracellular pH and calcium homeostasis during the pH paradox of reperfusion injury to cultured neonatal rat cardiac myocytes. Am J Physiol 1993;263:C129–C137.

    Google Scholar 

  199. Qian T, Nieminen A-L, Herman B, Lemasters JJ. The role of pHi, Na+, and the mitochondrial permeability transition inreperfusion injury to rat hepatocytes: Protection bycyclosporinAand glycine. Am J Physiol 1997;273:C1783–C1792.

    Google Scholar 

  200. Bolli R. Mechanism of myocardial “stunning”. Circulation 1990;82:723–738.

    Google Scholar 

  201. Ellis SG, Henschke CI, Sandor T, Wynne J, Braunwald E, Kloner RA. Time course of functional and biochemical recovery of myocardium salvaged by reperfusion. J Am Coll Cardiol 1983;1:1047–1055.

    Google Scholar 

  202. Reimer KA, Hill ML, Jennings RB. Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 1981:13:229–239.

    Google Scholar 

  203. Swain JL, Sabina RL, McHale PA, Greenfield JC Jr, Holmes EW. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 1982;242: H818–H826.

    Google Scholar 

  204. Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium: Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 1984;55:816–824.

    Google Scholar 

  205. Ambrosio G, Jacobus WE, Bergmann CA, Weisman HF, Becker LC. Preserved high energy phosphate metabolic reserve in globally “stunned” hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 1987;19:953–964.

    Google Scholar 

  206. Taegtmeyer H, Roberts AFC, Raine AEG. Energy metabolism in reperfused heart muscle: Metabolic correlates to return of function. J Am Coll Cardiol 1985;6:864–780.

    Google Scholar 

  207. Ambrosio G, Jacobus WE, Mitchell MC, Litt MR, Becker LC. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts. Am J Physiol 1989;256:H560–H566.

    Google Scholar 

  208. Hoffmeister HM, Mauser M, Schaper W. Effect of adenosine and AICA ribose on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 1985;80:445–458.

    Google Scholar 

  209. Becker LC, Levine JH, Di Paula AF, Guarnieri T, Aversano TR. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 1986;7:580–589.

    Google Scholar 

  210. Mercier JC, Lando U, Kanmatuse K, Ninomiya K, Meerbaum S, Fishbein MC, Sean HJC, Ganz W. Divergent effects of inot-ropic stimulation on the ischemic and severely depressed reperfused myocardium. Circulation 1982;66:397–400.

    Google Scholar 

  211. Arnold JMO, Braunwald E, Sandor T, Kloner RA. Inotropic stimulation of reperfused myocardium with dopamine: Effects on infarct size and myocardial function. Am Heart J 1984;107:9–13.

    Google Scholar 

  212. Ito BR, Tate H, Kobayashi M, Schaper W. Reversibly injured, postischemic canine myocardium retains normal contractile reserve. Circ Res 1987;61:834–846.

    Google Scholar 

  213. Ferrari R, Ceconi C, Curello S, Benigno M, La Canna G, Visioli O. Left ventricular dysfunction due to the new ischemic outcomes: Stunning and hibernation. J Cardiovasc Pharmacol 1996;28(Suppl 1):S18–S26.

    Google Scholar 

  214. Schulz R, Guth BD, Pieper K, Martin C, Heusch G. Recruitment of an inotropic reserve inmoderately ischemic myocardium at the expense of metabolic recovery: Amodel of shortterm hibernation. Circ Res 1992;70:1282–1295

    Google Scholar 

  215. Ferrari R, Cargnoni A, Curello S, Ceconi C, Volpini M, Visioli O. Metabolic adaptation of underperfused isolated rabbit heart: An insight into molecular mechanisms underlying hibernation. Circulation 1993;88:1004 (Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, K., Dörner, A. & Schultheiß, HP. Mitochondrial Function in Heart Failure. Heart Fail Rev 4, 229–244 (1999). https://doi.org/10.1023/A:1009810023405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009810023405

Navigation