Advertisement

Journal of Combinatorial Optimization

, Volume 1, Issue 1, pp 47–65 | Cite as

New Approximation Algorithms for the Steiner Tree Problems

  • Marek Karpinski
  • Alexander Zelikovsky
Article

Abstract

The Steiner tree problem asks for the shortest tree connecting a given set of terminal points in a metric space. We design new approximation algorithms for the Steiner tree problems using a novel technique of choosing Steiner points in dependence on the possible deviation from the optimal solutions. We achieve the best up to now approximation ratios of 1.644 in arbitrary metric and 1.267 in rectilinear plane, respectively.

Keywords

Mathematical Modeling Approximation Algorithm Industrial Mathematic Discrete Geometry Approximation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, P., and V. Ramaiyer. (1991). “An approximation algorithm for the Steiner tree problem.” The Pennsylvania State University, PA, Technical Report #CS-91-05.Google Scholar
  2. Berman, P., and V. Ramaiyer. (1994). “Improved approximations for the Steiner tree problem,” J. of Algorithms vol. 17 pp. 381–408.Google Scholar
  3. Berman, P., U. Fößmeier, M. Karpinski, M. Kaufmann, and A. Zelikovsky. (1994). “Approaching the 5/4-Approximations for Rectilinear Steiner Trees,” LNCS vol. 855, Springer-Verlag, pp. 60–71, 1994.Google Scholar
  4. Bern, M., and D. Eppstein. (1995), “Approximation Algorithms for Geometric Problems,” in D. Hochbaum, (ed.), Approximation Algorithms for NP-Complete Problems, PWS Publications. (to appear)Google Scholar
  5. Bern, M., and P. Plassmann. (1989). “The Steiner problems with edge lengths 1 and 2,” lnform. Process. Lett. vol. 32 pp. 171–176.Google Scholar
  6. Borchers, A., and D. Du. (1995). “The k-Steiner Ratio in Graphs,” Proc. 27th ACM STOC (1995), pp. 641–649.Google Scholar
  7. Du, D., Y. Zhang, and Q. Feng. (1991). “On better heuristic for Euclidean Steiner minimum trees,” in Proc. 32nd IEEE Symp. on Found. of Comp. Science, pp. 43l–439.Google Scholar
  8. Fößmeier, U., M. Kaufmann, and A. Zelikovsky. (1993). “Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem,” LNCS vol. 762, Springer-Verlag, pp. 533–542.Google Scholar
  9. Garey, M. R., and D. S. Johnson. (1977). “The Rectilinear Steiner Problem is NP-Complete,” SIAM J. Appl. Math. Vol. 32 pp. 826–834.Google Scholar
  10. Gilbert, E. N., and H. O. Pollak. (1968). “Steiner Minimal Trees,” SIAM Appl. Math. vol. 16 pp. 1–29.Google Scholar
  11. Hwang, F. K. (1976). “On Steiner Minimal Trees with Rectilinear Distance,” SIAM J. Appl. Math. vol. 30 pp. 104–114.Google Scholar
  12. Hwang, F. K. (1979). “An o(n log n) algorithm for rectilinear minimum spanning trees,” J. ACM vol. 26 pp. 177–182.Google Scholar
  13. Hwang, F. K., D. Richards, and P. Winter. (1992). The Steiner Tree Problem, Annals of Disc. Math. vol. 53.Google Scholar
  14. Karpinski, M., and A. Zelikovsky. (1995). “1.757 and 1.267-Approximation Algorithms for the Network and Rectilinear Steiner Tree Problems.” International Computer Science Institute, Berkeley, CA, Technical Report TR-95010.Google Scholar
  15. Khang, A. B., and G. Robins, (1995). On optimal interconnections for VLSI, Kluwer Academic Publishers, Boston. MA.Google Scholar
  16. Korte, B., H. J. Prömel, and A. Steger. (1990). “Steiner Trees in VLSI-Layouts.” in Korte et al. (eds.): Paths, Flows and VLSI-Layout, Springer.Google Scholar
  17. Mehlhorn, K. (1988), “A faster approximation algorithm for the Steiner problem in graphs”Inf. Process. Lett. vol. 27 pp. 125–128.Google Scholar
  18. Salowe, J. S., and D. M. Warme. (1993). “An exact rectilinear Steiner tree algorithm,” in Proc. of the lnt. Conf. on Comp. Design, pp. 472–475.Google Scholar
  19. Takahashi, H., and A. Matsuyama. (1980), “An approximate solution for the Steiner problem in graphs.” Math. Japonica vol. 24 pp. 573–577.Google Scholar
  20. Zelikovsky, A. Z. (1993). “An 1l/6-approximation Algorithm for the network Steiner Problem,” Algorithmica vol. 9 pp. 463–470.Google Scholar
  21. Zelikovsky, A. Z. (1992). “An 1l/8-approximation Algorithm for the Steiner Problem on Networks with Rectilinear Distance,” in Coll. Math. Soc. J. Bolyai vol. 60 pp. 733–745.Google Scholar
  22. Zelikovsky, A. Z. (1993). “A faster approximation algorithm for the Steiner Tree Problem in Graphs,” lnf. Process. Lett. vol. 46 pp. 79–83.Google Scholar
  23. Zelikovsky, A. Z. (1995). “Better approximation bounds for the network and Euclidean Steiner tree problems,” Manuscript.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Marek Karpinski
    • 1
    • 2
  • Alexander Zelikovsky
    • 3
  1. 1.Department of Computer ScienceUniversity of BonnBonn, and
  2. 2.International Computer Science InstituteBerkeley, California, Email
  3. 3.Department of Computer Science, Thornton HallUniversity of Virginia

Personalised recommendations