Skip to main content
Log in

On Falconer’s distance set problem in the plane

  • Published:
Inventiones mathematicae Aims and scope

Abstract

If \(E \subset \mathbb {R}^2\) is a compact set of Hausdorff dimension greater than 5 / 4, we prove that there is a point \(x \in E\) so that the set of distances \(\{ |x-y| \}_{y \in E}\) has positive Lebesgue measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bourgain, J.: Hausdorff dimension and distance sets. Israle J. Math. 87(1–3), 193–201 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J.: On the Erdős-Volkmann and Katz-Tao ring conjectures. Geom. Funct. Anal. 13(2), 334–365 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015)

    Article  MathSciNet  Google Scholar 

  4. Du, X., Guth, L., Li, X.: A sharp Schrödinger maximal estimate in \(\mathbb{R}^2\). Ann. Math. 186, 607–640 (2017)

    Article  MathSciNet  Google Scholar 

  5. Du, X., Guth, L., Li, X., Zhang, R.: Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimate (2018). arXiv:1803.01720

  6. Du, X., Guth, L., Ou, Y., Wang, H., Wilson, B., Zhang, R.: Weighted restriction estimates and application to Falconer distance set problem (2018). arXiv:1802.10186

  7. Du, X., Zhang, R.: Sharp \(L^2\) estimate of Schrödinger maximal function in higher dimensions (2018). arXiv:1805.02775

  8. Eswarathasan, S., Iosevich, A., Taylor, K.: Fourier integral operators, fractal sets and the regular value theorem. Adv. Math. 228, 2385–2402 (2011)

    Article  MathSciNet  Google Scholar 

  9. Erdoğan, B.: A bilinear Fourier extension theorem and applications to the distance set problem. Int. Math. Res. Not. 2005(23), 1411–1425 (2005)

    Article  MathSciNet  Google Scholar 

  10. Erdös, P.: On sets of distances of n points. Am. Math. Mon. 53, 248–250 (1946)

    Article  MathSciNet  Google Scholar 

  11. Falconer, K.J.: On the Hausdorff dimensions of distance sets. Mathematika 32(2), 206–212 (1985)

    Article  MathSciNet  Google Scholar 

  12. Garibaldi, J.: Erdös distance problem for convex metrics. Thesis (Ph.D.), University of California, Los Angeles (2004)

  13. Guth, L.: Restriction estimates using polynomial partitioning II (2016). arXiv:1603.04250

  14. Guth, L., Katz, N.H.: On the Erdős distinct distance problem in the plane. Ann. Math. (2) 181(1), 155–190 (2015)

    Article  MathSciNet  Google Scholar 

  15. Herz, C.S.: Fourier transforms related to convex sets. Ann. Math. (2) 75(1), 81–92 (1962)

    Article  MathSciNet  Google Scholar 

  16. Hofmann, S., Iosevich, A.: Circular averages and Falconer/Erdös distance conjecture in the plane for random metrics. Proc. Am. Mat. Soc. 133, 133–144 (2005)

    Article  Google Scholar 

  17. Iosevich, A., Rudnev, M., Uriarte-Tuero, I.: Theory of dimension for large discrete sets and applications. Math. Model. Nat. Phenom. 9(5), 148–169 (2014)

    Article  MathSciNet  Google Scholar 

  18. Iosevich, A., Łaba, I.: K-distance sets, Falconer conjecture, and discrete analogs. Integers Electron. J. Comb. Number Theory 5 (2005). #A08 (In: Topics in Combinatorial Number Theory: Proceedings of the Integers Conference 2003 in Honor of Tom Brown, DIMATIA, ITI Series, vol. 261)

  19. Iosevich, A., Liu, B.: Pinned distance problem, slicing measures and local smoothing estimates (2017). arXiv:1706.09851

  20. Iosevich, A., Rudnev, M.: Distance measures for well-distributed sets. Discret. Comput. Geom. 38, 61–80 (2007)

    Article  MathSciNet  Google Scholar 

  21. Iosevich, A., Senger, S.: Sharpness of Falconer’s \(\frac{d+1}{2}\) estimate. Ann. Acad. Sci. Fenn. Math. 41(2), 713–720 (2016)

    Article  MathSciNet  Google Scholar 

  22. Katz, N., Tao, T.: Some connections between Falconer’s distance set conjecture and sets of Furstenburg type. N. Y. J. Math. 7, 149–187 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Katz, N., Tardos, G.: A new entropy inequality for the Erdos distance problem. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, vol. 342, pp. 119–126. Contemporary Mathematics Publication, American Mathematical Society, Providence (2004)

    Chapter  Google Scholar 

  24. Keleti, T., Shmerkin, P.: New bounds on the dimensions of planar distance sets (2018). arXiv:1801.08745

  25. Liu, B.: An \(L^2\)-identity and pinned distance problem (2018). arXiv:1802.00350

  26. Mattila, P.: On the Hausdorff dimension and capacities of intersections. Mathematika 32, 213–217 (1985)

    Article  MathSciNet  Google Scholar 

  27. Mattila, P.: Spherical averages of Fourier transforms of measures with finite energy: dimensions of intersections and distance sets. Mathematika 34, 207–228 (1987)

    Article  MathSciNet  Google Scholar 

  28. Moser, L.: On the different distances determined by n points. Am. Math. Mon. 59(2), 85–91 (1952)

    Article  MathSciNet  Google Scholar 

  29. Orponen, T.: On the distance sets of Ahlfors-David regular sets. Adv. Math. 307, 1029–1045 (2017)

    Article  MathSciNet  Google Scholar 

  30. Orponen, T.: On the dimension and smoothness of radial projections (2017). arXiv:1710.11053v2(preprint)

  31. Peres, Y., Schlag, W.: Smoothness of projections, Bernoulli convolutions and the dimension of exceptions. Duke Math J. 102, 193–251 (2000)

    Article  MathSciNet  Google Scholar 

  32. Shmerkin, P.: On distance sets, box-counting and Ahlfors regular sets. Discret. Anal. 9, 22 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Shmerkin, P.: On the Hausdorff dimension of pinned distance sets (2017). arXiv:1706.00131

  34. Solymosi, J., Vu, V.: Near optimal bounds for the Erdős distinct distances problem in high dimensions. Combinatorica 28(1), 113–125 (2008)

    Article  MathSciNet  Google Scholar 

  35. Stein, E.: Harmonic Analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  36. Wolff, T.: Decay of circular means of Fourier transforms of measures. Int. Math. Res. Not. 1999(10), 547–567 (1999)

    Article  MathSciNet  Google Scholar 

  37. Wolff, T.: Lectures on Harmonic Analysis. University Lecture Series, vol. 29. American Mathematican Society, Providence (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for helpful comments and suggestions. Larry Guth is supported by a Simons Investigator grant. Alex Iosevich is supported in part by the NSA Grant H98230-15-0319. Yumeng Ou is supported in part by NSF-DMS #1854148 (previously #1764454).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumeng Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Discussion of the lower bound on the upper Minkowski dimension of \(\Delta _{x,K}(E)\) in Remark 1.4

Appendix: Discussion of the lower bound on the upper Minkowski dimension of \(\Delta _{x,K}(E)\) in Remark 1.4

Let \(\rho \) be a smooth cut-off function supported in the ball of radius 2 and equal to 1 in the ball of radius 1 centered at the origin. Let \(\rho _{\delta }(x)=\delta ^{-d} \rho (\delta ^{-1}x)\). Following the argument in (2.5) with \(\mu _{1,good}\) replaced by \(\mu _{1,good}*\rho _{\delta }\), we see that the Lebesgue measure of the \(\delta \)-neighborhood of \(\Delta _{x,K}(E)\) is bounded from below by

$$\begin{aligned} \frac{\left( 1-\frac{2}{1000}\right) ^2}{\int {|d_{*}^{x}\mu _{1,good}*\rho _{\delta }|}^2}.\end{aligned}$$

Following (5.2) with \(\mu _{1,good}\) replaced by \(\mu _{1,good}*\rho _{\delta }\), we see that the expression above is bounded from below by \(C \delta ^{\frac{5}{3}-\frac{4 \alpha }{3}+\epsilon }\), hence there exists \(x \in E\) such that the upper Minkowski dimension of \(\Delta _{x,K}(E)\) is bounded from below by

$$\begin{aligned} 1-\left( \frac{5}{3}-\frac{4 \alpha }{3} \right) =\frac{4}{3}\alpha -\frac{2}{3}, \end{aligned}$$

as claimed.

It would be interesting to obtain a lower bound on the Hausdorff dimension of \(\Delta _{x,K}(E)\). If \(\mu _{1,good}\) were positive, it would be sufficient to show that

$$\begin{aligned} \int _{E_2} I_{\gamma } d^x_*(\mu _{{1, good}}) d\mu _2(x) \end{aligned}$$
(9.1)

is bounded with \(\gamma <\frac{4}{3}\alpha -\frac{2}{3}\). This estimate follows from the same argument as in (5.2) above. Unfortunately, in view of the fact that \(\mu _{1,good}\) is complex valued, the estimate (9.1) does not appear to be sufficient to draw the desired conclusion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guth, L., Iosevich, A., Ou, Y. et al. On Falconer’s distance set problem in the plane. Invent. math. 219, 779–830 (2020). https://doi.org/10.1007/s00222-019-00917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-019-00917-x

Navigation