Skip to main content
Log in

A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A bioassay was developed for identifying transgenic wheat plants based on De Block et al.'s [8] ammonium-multiwell assay which allows qualitative and quantitative evaluation of the expression of the enzyme phosphinothricin acetyl transferase (PAT). Important parameters in the assay are the use of young leaf tissues, short incubation period (6 h) and a high light intensity during incubation (250 μmol s−1m−2). The assay is quick and results are obtained within a day. Ammonium measurements based on a colourimetric (modified Berthelot) reaction are conducted using sodium salicylate to avoid the use of phenol. Results of the assay show high correlation with Basta leaf painting tests and polymerase chain reaction (PCR) results. Thus, the assay may be used as a facile screen for bar-expressing transgenic cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altpeter F, Vasil V, Srivastava V, Stoeger E, Vasil IK: Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16: 12–17 (1996).

    CAS  Google Scholar 

  2. Becker D, Brettschneider R, Lörz H: Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5: 299–307 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Brettschneider R, Becker D, Lörz H: Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94: 737–748 (1997).

    Article  CAS  Google Scholar 

  4. Castillo AM, Vasil V, Vasil IK: Rapid production of fertile transgenic plants of rye (Secale cereale L.). Bio/technology 12: 1366–1371 (1994).

    CAS  Google Scholar 

  5. Christensen AH, Quail PH: Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen Res 5: 213–218 (1996).

    Article  CAS  Google Scholar 

  6. Christou P, Ford TL, Kofron M: Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/technology 9: 957–962 (1991).

    Article  Google Scholar 

  7. De Block M, Debrouwer D, Tenning P: Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91: 694–701 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. De Block M, De Sonville A, Debrouwer D: The selection mechanism of phosphinothricin is influenced by the metabolic status of the tissue. Planta 197: 619–626 (1995).

    CAS  Google Scholar 

  9. Dennehey BK, Petersen WL, Ford-Santino C, Pajeau M, Armstrong CL: Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tissue Organ Cult 36: 1–7 (1994).

    Article  CAS  Google Scholar 

  10. D'Halluin K, De Block M, Denecke J, Janssens J, Leemans J, Reynaerts A, Botterman J: The bar gene as a selectable and screenable marker in plant engineering. Meth Enzymol 216: 415–426 (1992).

    Article  PubMed  Google Scholar 

  11. Diaz A, Lacuesta M, Munoz-Rueda A: Comparative effects of phosphinothricin on nitrate and ammonium assimilation and on anaplerotic CO2 fixation in N-deprived barley plants. J Plant Physiol 149: 9–13 (1996).

    CAS  Google Scholar 

  12. Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O'Brien JV, Chambers SA, Adams WR Jr, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP and Lemaux PG: Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. Hänsch R, Mendel RR, Schulze J: A rapid and sensitive method to evaluate genotype specific tolerance to phosphinothricin-based selective agents in cereal transformation. J Plant Physiol 152: 145–150 (1998).

    Google Scholar 

  14. Kempers AJ and Zweers A: Ammonium determination in soil extracts by the salicylate method. Comm Soil Sci Plant Anal 17: 715–723 (1986).

    CAS  Google Scholar 

  15. Koprek T, Hänsch R, Nerlich A, Mendel RR, Schulze J: Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci 119: 79–91 (1996).

    Article  CAS  Google Scholar 

  16. Kramer C, DiMaio J, Carswell GK, Shillito RD: Selection of transformed protoplastderived Zea mays colonies with phosphinothricin and a novel assay using the pH indicator chlorophenol red. Planta 190: 454–458 (1993).

    Article  CAS  Google Scholar 

  17. Krieg LC, Walker MA, Senaratna T, McKersie BD: Growth, ammonia accumulation and glutamine synthetase activity in alfalfa (Medicago sativa L.) shoots and cell cultures treated with phosphinothricin. Plant Cell Rep 9: 80–83 (1990).

    Article  CAS  Google Scholar 

  18. Krom MD: Spectrophotometric determination of ammonia: a study of a modified berthelot reaction using salicylate and dichlorisocyanurate. Analyst 105: 305–316 (1980).

    Article  CAS  Google Scholar 

  19. Lacuesta M, Gonzalez-Moro B, Gonzalez-Murua C, Aparicio-Tejo P, Munoz-Rueda A: Effect of phosphinothricin (glufosinate) on activities of glutamine synthetase and glutamate dehydrogenase in Medicago sativa L. J Plant Physiol 134: 304–307 (1989).

    CAS  Google Scholar 

  20. Rasco-Gaunt S, Barcelo P: Immature inflorescence culture of cereals: a highly responsive system for regeneration and transformation. In: Hall RD (ed) Plant Cell Culture Protocols. Methods in Molecular Biology Series. Humana Press, Totowa, NJ (1998).

    Google Scholar 

  21. Searle PL: The Berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. Analyst 109: 549–568 (1985).

    Article  Google Scholar 

  22. Seelye JF, Borst WM, King GA, Hannan PJ, Maddocks D: Glutamine synthetase activity, ammonium accumulation and growth of callus cultures of Asparagus officinalis L. exposed to high ammonium or phosphinothricin. J Plant Physiol 146: 686–692 (1995).

    CAS  Google Scholar 

  23. Stacey J, Isaac PG: Isolation of DNA from plants. In: Isaac PG (ed) Methods in Molecular Biology-Protocols for Nucleic Acid Analysis by Nonradioactive Probes, vol. 28, pp. 9–15. Humana Press, Totowa, NJ (1994).

    Google Scholar 

  24. Tachibana K, Watanabe T, Sekizawa Y, Takematsu T: Accumulation of ammonia in plants treated with Bialaphos. J Pesticide Sci 11: 33–37 (1986).

    CAS  Google Scholar 

  25. Wan Y, Lemaux PG: Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104: 37–48 (1994).

    PubMed  CAS  Google Scholar 

  26. Weeks JT, Anderson OD, Blechl AE: Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077–1084 (1993).

    PubMed  CAS  Google Scholar 

  27. Wendler C, Barniske M, Wild A: Effect of phosphinothricin (glufosinate) on photosynthesis and photorespiration of C3 and C4 plants. Photosyn Res 24: 55–61 (1990).

    Article  CAS  Google Scholar 

  28. Wild A, Ziegler C: The effect of bialaphos on ammoniumassimilation and photosynthesis. I. Effect on the enzymes of ammonium-assimilation. Naturforsch 44: 97–102 (1989).

    CAS  Google Scholar 

  29. Wild A, Ziegler C: The effect of bialaphos on ammoniumassimilation and photosynthesis. II. Effect on photosynthesis and photorespiration. Naturforsch 44: 103–108 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasco-Gaunt, S., Riley, A., Lazzeri, P. et al. A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Molecular Breeding 5, 255–262 (1999). https://doi.org/10.1023/A:1009689906936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009689906936

Navigation