Skip to main content
Log in

Semi-parametric statistical approaches for space-time process prediction

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

The problem of estimation and prediction of a spatial-temporal stochastic process, observed at regular times and irregularly in space, is considered. A mixed formulation involving a non- parametric component, accounting for a deterministic trend and the effect of exogenous variables, and a parametric component representing the purely spatio-temporal random variation is proposed. Correspondingly, a two-step procedure, first addressing the estimation of the non- parametric component, and then the estimation of the parametric component is developed from the residual series obtained, with spatial-temporal prediction being performed in terms of suitable spatial interpolation of the temporal variation structure. The proposed model formula-tion, together with the estimation and prediction procedure, are applied using a Gaussian ARMA structure for temporal modelling to space-time forecasting from real data of air pollution concentration levels in the region surrounding a power station in northwest Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, R.J. (1979) Spatial Time Series, Pion Limited, London.

    Google Scholar 

  • Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society, Series B, 36, 192–236.

    Google Scholar 

  • Bilonick, R.A. (1983) Risk qualified maps of hydrogen ion concentration for the New York state area for 1966–1978. Atmospheric Environment, 17, 2513–24.

    Google Scholar 

  • Box, G.E.P. and Jenkins, G.M. (1974) Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco.

    Google Scholar 

  • Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, Springer-Verlag, New York.

    Google Scholar 

  • Carroll, R.J., Chen, R., George, E.I., Li, T.H., Newton, H.J., Shimiediche, H. and Wang, W. (1997) Ozone exposure and population density in Harris County, Texas. Journal of the American Statistical Association, 92(438), 392–415.

    Google Scholar 

  • Cliff, A.D. and Ord, J.K. (1981) Spatial Processes: Models and Applications, Pion, London.

    Google Scholar 

  • Cressie, N. (1993) Statistics for Spatial Data, Wiley & Sons, New York.

    Google Scholar 

  • Deutsch, S.J. and Pfeifer, P.E. (1981) Space-time ARMA modelling with contemporaneously correlated innovations, Technometrics, 23(4), 401–9.

    Google Scholar 

  • García-Jurado, I., González-Manteiga, W., Prada-Sánchez, J.M., Febrero-Bande, M. and Cao, R. (1995) Predicting using Box-Jenkins, nonparametric, and bootstrap techniques, Technometrics, 37(3), 303–10.

    Google Scholar 

  • Gasser, T. and Müller, H.G. (1979) Kernel estimation of regression functions, In Smoothing Techniques for Curve Estimation, T. Gasser and M. Rosenblatt (eds), Springer-Verlag, Heidelberg.

    Google Scholar 

  • Goodall, C.R. and Mardia, K.V. (1994) Challenges in multivariate spatio-temporal modelling, Technical Report, STAT 94/07, University of Leeds, U.K.

    Google Scholar 

  • Guttorp, P., Meiring, W. and Sampson, P.D. (1994) A space-time analysis of ground-level ozone data, Environmetrics, 5, 241–54.

    Google Scholar 

  • Guttorp, P. and Sampson, P.D. (1994) Methods for estimating heterogeneous spatial covariance functions with environmental applications. In Handbook of Statistics, G.P. Patil and C.R. Rao, (eds) Elsevier Science, 12, 661–89.

  • Guyon, X. (1995) Random Fields on a Network: Modelling, Statistics, and Applications, Springer-Verlag, New York.

    Google Scholar 

  • Haas, T.C. (1995) Local prediction of a spatio-temporal process with an application to wet sulfate deposition. Journal of the American Statistical Association, 90(432), 1189–99.

    Google Scholar 

  • Härdle, W. (1990) Applied Nonparametric Regression, Cambridge University Press, London.

    Google Scholar 

  • Haslett, J. (1989) Space time modelling in meteorology: a review. Bulletin of the I.S.I., 51, 229–46.

    Google Scholar 

  • Haslett, J. and Raftery, A.E. (1989) Space-time modelling with long-memory dependence: assessing Ireland's wind power resource. Applied Statistics, 38, 1–21.

    Google Scholar 

  • Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models, Chapman & Hall, New York.

    Google Scholar 

  • Høst, G., Omre, H. and Switzer, P. (1995) Spatial interpolation errors for monitoring data. Journal of the American Statistical Association, 90(431), 853–61.

    Google Scholar 

  • Huang, H. and Cressie, N. (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Computational Statistics & Data Analysis, 22, 159–75.

    Google Scholar 

  • Laslett, G.M. (1994) Kriging and splines: an empirical comparison of their predictive performance in some applications. Journal of the American Statistical Association, 89(426), 391–409.

    Google Scholar 

  • Mardia, K.V. and Goodall, C.R. (1993a) Factorized models in spatial modeling. In Multivariate Environmental Statistics, N.K. Bose, G.P. Patil and C.R. Rao (eds), North Holland, Amsterdam.

    Google Scholar 

  • Mardia, K.V. and Goodall, C.R. (1993b) Spatial-temporal analysis of multivariate environmental monitoring data. In Multivariate Environmental Statistics, G.P. Patil and C.R. Rao, (eds) North Holland, Amsterdam. pp. 347–86.

    Google Scholar 

  • Mardia, K.V., Kent, J.T., Goodall, C.R. and Little, J.A. (1996) Kriging and splines with derivative information. Biometrika, 83(1), 207–21.

    Google Scholar 

  • Müller, H.G., Stadtmüller, U. and Tabnak, F. (1997) Spatial smoothing of geographically aggregated data, with application to the construction of incidence maps. Journal of the American Statistical Association, 92(437), 61–71.

    Google Scholar 

  • Niu, X.F. (1996) Nonlinear additive models for environmental time series, with applications to ground-level ozone data analysis. Journal of the American Statistical Association, 91(435), 1310–21.

    Google Scholar 

  • Patil, G.P. and Rao, C.R. (eds) (1993) Multivariate Environmental Statistics, North Holland, Amsterdam.

    Google Scholar 

  • Pfeifer, P.E. and Deutsch, S.J. (1980a) A three-stage iterative procedure for space-time modelling. Technometrics, 22(1), 35–47.

    Google Scholar 

  • Pfeifer, P.E. and Deutsch, S.J. (1980b) Identification and interpretation of first order space-time ARMA models, Technometrics, 22(4), 397–408.

    Google Scholar 

  • Posa, D. (1993) A simple description of spatial-temporal processes. Computational Statistics & Data Analysis, 15, 425–37.

    Google Scholar 

  • Rouhani, S. and Wackernagel, H. (1990) Multivariate geostatistical approach to space-time data analysis. Water Resources Research, 26, 585–91.

    Google Scholar 

  • Sampson, P.D. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association, 87(417), 108–19.

    Google Scholar 

  • Shumway, R.H. and Stoffer, D.S. (1982) An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3, 253–64.

    Google Scholar 

  • Stein, M. (1986) A simple model for spatial-temporal processes. Water Resources Weather Review, 22, 2107–10.

    Google Scholar 

  • Truong, Y.K. (1994) Nonparametric time series regression. Annals of the Institute of Statistical Mathematics, 46(2), 279–93.

    Google Scholar 

  • Truong, Y.K. and Stone, C.J. (1994) Semiparametric time series regression. Journal of Time Series Analysis, 15(4), 405–28.

    Google Scholar 

  • Wahba, G. (1990) Spline Models for Observational Data, SIAM, Philadelphia.

    Google Scholar 

  • Wikle, C.K. and Cressie, N.A.C. (1997) A dimension-reduction approach to space-time Kalman filtering. Preprint 97–24.

  • Yakowitz, S.J. and Szidaroyszky, F. (1985) A comparison of kriging with nonparametric regression methods. Journal of Multivariate Analysis, 16, 21–53.

    Google Scholar 

  • Zhang, B. and Stein, M. (1993) Kernel approximations for universal kriging predictors. Journal of Multivariate Analysis, 44, 286–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angulo, J., González-Manteiga, W., Febrero-Bande, M. et al. Semi-parametric statistical approaches for space-time process prediction. Environmental and Ecological Statistics 5, 297–316 (1998). https://doi.org/10.1023/A:1009670920927

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009670920927

Navigation