Skip to main content
Log in

Dissolution Kinetics of Calcite in 0.1 M NaCl Solution at Room Temperature: An Atomic Force Microscopic (AFM) Study

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) was used to study the rates of migration of the (10¯1 4) plane of a single-crystal of calcite dissolving in 0.1 M NaCl aqueous solutions at room temperature. The solution pH and PCO 2 controlled in the ranges 4.4 < pH < 12.2 and 0 < PCO 2 < 10-3.5 atm (ambient), respectively. Measured step velocities were compared with the mineral dissolution rates determined from the calcium fluxes. The step velocity is defined as the average of the velocities of the obtuse and acute steps. Rates of step motion increased gradually from 1.4(±0.2) at pH 5.3 to 2.4(±0.3) nm s-1 at pH 8.2, whereas the rates inverted and decreased to the minimum value of 0.69(±0.18) nm s-1 at pH 10.8. For pH > 10.8, only the velocity of the obtuse steps increased as pH increased, whereas that of acute steps gradually decreased.

The dissolution rate of the mineral can be calculated from the measured step velocities and average slope, which is proportional to the concentration of exposed monomolecular steps on the surface. The average slope of the dissolving mineral, measured at pH 5.6 and 9.7, was 0.026 (±0.015). Using this slope, we calculate bulk dissolution rates for 5.3 < pH < 12.2 of 4.9(±3.0) × 10-11 to 1.8(±1.0) × 10-10 mol cm-2 s-1. The obtained dissolution rate can be expressed by the following empirical equation:

Rdss = 10-4.66(±0.13)[H+] + 10-3.87(±0.06)[HCO3 -] + 10-7.99(plusmn; 0.08)[OH-]

We propose that calcite dissolution in these solutions is controlled by elementary reactions that are similar to those that control the dissolution of other amphoteric solids, such as oxides. The mechanisms include the proton-enhanced hydration and detachment of calcium-carbonate ion pairs. The detachments are enhanced by the presence of adsorbed nucleophiles, such as hydroxyl and bicarbonate ions, and by protons adsorbed to key oxygens. A molecular model is proposed that illustrates these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakaki, T. and Mucci, A. (1995) A continuous and mechanistic representation of calcite reactioncontrolled kinetics in dilute solutions at 25_C and 1 atm total pressure. Aquat.Geochem.1, 105–130.

    Google Scholar 

  • Binning, G., Quate, C. F., and Gerber, Ch. (1986) Atomic force microscope. Phys.Rev.Lett.56,930–933.

    Google Scholar 

  • Blum, A. E. (1994) Determination of illite/smectite particle morphology using scanning force microscopy. In Scanning Probe Microscopy of Clay Minerals(eds. K. L. Nagy and A. E. Blum) Clay Minerals Society Workshop LecturesVol. 7, pp. 172–202.

  • Bosbach, D. and Rammensee, W. (1994) In situ investigation of growth and dissolution on the (010) surface of gypsum by scanning forcemicroscopy. Geochim.Cosmochim.Acta 58, 842–849.

    Google Scholar 

  • Bosbach, D., Jordan, G., and Rammensee, W. (1995) Crystal growth and dissolution kinetics of gypsum and fluorite: an in situ scanning force microscope study. Euro.J.Mineral.7, 267–276.

    Google Scholar 

  • Britt, D. W. and Hlady, V. (1997) In-situ atomic force microscope imaging of calcite etch pit morphology changes in undersaturated and 1-Hydroxyethylidene-1,1-diphosphoric acid poisoned solutions. Langmuir 13, 1873–1876.

    Google Scholar 

  • Busenberg, E. and Plummer, L. N. (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. U.S.Geol.Surv.Bull.1578, 139–168.

    Google Scholar 

  • Charlet, L., Wersin, P., and Stumm, W. (1990) Surface charge of MnCO3 and FeCO3. Geochim.Cosmochim.Acta 54, 59–97.

    Google Scholar 

  • Chou, L., Garrels, R. M., and Wollast, R. (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem.Geol.78, 269–282.

    Google Scholar 

  • Compton, R. G. and Unwin, P. R. (1990) The dissolution of calcite in aqueous solution at pH <4: Kinetics and Mechanism. Phil.Trans.R.Soc.Lond.A330, 1–45.

    Google Scholar 

  • Dove, P.M. and Chermak, J. A. (1994) Mineral-water interactions: Fluid cell applications of scanning force microscopy. In Scanning Probe Microscopy of Clay Minerals(eds. K. L. Nagy and A. E. Blum) Clay Minerals Society Workshop LecturesVol. 7, pp. 140–169.

  • Dove, P. M. and Hochella, M. F. (1993) Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by Scanning Force Microscopy. Geochim.Cosmochim.Acta 57, 705–714.

    Google Scholar 

  • Dove, P.M. and Platt, F. M. (1996) Compatible real-time rates of mineral dissolution by atomic force microscopy (AFM). Chem.Geol.127, 331–338.

    Google Scholar 

  • Drake, B. and Hellman, R. (1991) Atomic force microscopy imaging of the albite (010) surface. Amer.Mineral.76, 1773–1776.

    Google Scholar 

  • Eggleston, C. M. (1994) High-resolution scanning probe microscopy: Tip-surface interaction, artifacts, and applications in mineralogy and geochemistry. In Scanning Probe Microscopy of Clay Minerals(eds. K. L. Nagy and A. E. Blum) Clay Minerals Society Workshop LecturesVol. 7, pp. 3–90.

  • Gratz, A. J. and Hillner, P. E. (1993) Poisoning of calcite growth viewed in the atomic force microscope (AFM). J.Cryst.Growth 129, 789–793.

    Google Scholar 

  • Gratz, A. J., Hillner, P. E., and Hansma, P. K. (1993) Step dynamics and spiral growth on calcite. Geochim.Cosmochim.Acta 57, 491–495.

    Google Scholar 

  • Hillner, P. E., Gratz, A. J., Manne, S., and Hansma, P. K. (1992a) Atomic-scale imaging of calcite and dissolution in real time. Geology 20, 359–362.

    Google Scholar 

  • Hillner, P. E., Manne, S., Gratz, A. J., and Hansma, P. K. (1992b) AFM images of dissolution and growth on a calcite crystal. Ultramicrosc.42–44, 1387–1393.

    Google Scholar 

  • Hochella, Jr., M. F. (1990) Atomic structure, microtopography, composition and reactivity of mineral surfaces. In Mineral-Water Interface Geochemistry(eds. M. F. Hochella Jr. and White A. F.) Mineral. Soc. Amer. Reviews in Mineralogy 23, 87–132.

  • Hochella, Jr., M. F., Eggleston, C. M., Elings, V. B., and Thompson, M. S. (1990) Atomic structure and morphology of the albite 010 surface: An AFMand electron diffraction study. Amer.Mineral. 75, 723–730.

    Google Scholar 

  • Johnsson, P. A., Eggleston, C. M., and Hochella, Jr., M. F. (1991) Imaging molecular-scale structure and microtopography of hematite with the AFM. Amer.Mineral.76, 1442–1445.

    Google Scholar 

  • Jordan, G. and Rammensee, W. (1997) Growth and dissolution on the CaF2 (111) surface observed by scanning force microscopy. Surf.Sci.371, 371–380.

    Google Scholar 

  • Jordan, G. and Rammensee, W. (1998) Dissolution rates of calcite (10N14) obtained by scanning force microscopy: microtopography-based dissolution kinetics on surfaces with anisotropic step velocities. Geochim.Cosmochim.Acta 62, 941–947.

    Google Scholar 

  • Kharaka, Y. K., Gunter, W. D., Aggarwal, P. K., Perkins, E. H., and De Braal, J. D. (1988) SOLMINEQ. 88: A computer program code for geochemical modeling of water-rock interactions. USGS Water Res.Investigation Report 88–4227.

  • Land, T. A., De Yoreo, J. J., and Lee, J. D. (1997) An in situAFM investigation of canavalin crystallization kinetics. Surface Sci.384, 136–155.

    Google Scholar 

  • Lanmuir, I. (1921) Types of valence. Science 54, 59–67.

    Google Scholar 

  • Larson, R. A. and Weber, E. J. (1994) Reaction mechanisms in Environmental organic chemistry. Lewis, Boca Raton.

    Google Scholar 

  • Liang, Y. and Baer, D. R. (1997) Anisotropic dissolution at the CaCO3 (1014)-water interface. Surface Sci.373, 275–287.

    Google Scholar 

  • Liang, Y., Baer, D. R., McCoy, J. M., and LaFemina, J. P. (1996a)Interplay between step velocity and morphology during dissolution of CaCO3 surface. J.Vac.Sci.Technol.A14, 1368–1375.

    Google Scholar 

  • Liang, Y., Lea, A. S., Baer, D. R., and Englehard, M. H. (1996b) Structure of the cleaved CaCO3 (1014) surface in an aqueous environment. (1015) Surface Sci.351, 172–182.

    Google Scholar 

  • MacInnis, I. N. and Brantley, S. L. (1992) The role of dislocations and surface morphology in calcite dissolution. Geochem.Cosmochim.Acta 56, 1113–1126.

    Google Scholar 

  • Marti, O., Drake, B., and Hansma, P. K. (1987) Atomic force microscopy of liquid-covered surfaces: Atomic resolution images. Appl.Phys.Lett.51, 484–486.

    Google Scholar 

  • Maurice, P. A., Hochella, Jr., M. F., Parks, G. A., Sposito, G., and Schwertmann, U. (1995) Evolution of hematite surface microtopography upon dissolution by simple organic acids. Clay Clay Minerals 43, 29–38.

    Google Scholar 

  • Mishra, S. K. (1978) The electrokinetics of apatite and calcite in inorganic electrolyte environment. Intl.J.Min.Proc.5, 69–83.

    Google Scholar 

  • Nagy, K. L. (1994) Application of morphological data obtained using scanning force microscopy to quantification of fibrous illite growth rates. In Scanning Probe Microscopy of Clay Minerals(eds. K. L. Nagy and A. E. Blum) Clay Minerals Society Workshop LecturesVol. 7, pp. 204–239.

  • Pauling, L. (1948) Modern theory of valence. J.Chem.Soc.London 1948, 1461–1467.

    Google Scholar 

  • Plummer, L. N., Wigley, T. M. L., and Parkhurst, D. L. (1978) The kinetics of calcite dissolution in CO2-water systems at 5_ to 60_C and 0.0 to 1.0 atm CO2. Amer.J.Sci.278, 179–216.

    Google Scholar 

  • Putnis, A., Junta-Rosso, J. L., and Hochella, Jr., M. F. (1995) Dissolution of barite by a chelating ligands: an atomic force microscopy study. Geochem.Cosmochim.Acta 59, 4623–4632.

    Google Scholar 

  • Rachlin, A. L., Henderson, G. S., and Goh, M. C. (1992) An atomic force microscope (AFM) study of the calcite cleavage plane: Image averaging in Fourier space. Amer.Mineral.77, 904–910.

    Google Scholar 

  • Reeder, R. J. (1983) Crystal chemistry of rhombohedral carbonates. In Carbonates: Mineralogy and Chemistry(ed. R. J. Reeder) Rev.Mineral.vol. 11, 1–47.

  • Somasundaran, P. and Agar, G. E. (1967) The zero point of charge of calcite. J.Coll.Interf.Sci.24, 433–440.

    Google Scholar 

  • Sjöberg, E. L. and Rickard, D. T. (1984) Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence. Chem.Geol.42, 119–136.

    Google Scholar 

  • Sparks, D. L. (1989) The kinetics of soil chemical processes. Academic Press.

  • Stipp, S. L. S., Eggleston, C. M., and Nielsen, B. S. (1994) Calcite surface structure observed at microtopographic and molecular scales with atomic force microscopy (AFM). Geochim. Cosmochim.Acta 58, 3023–3033.

    Google Scholar 

  • van Cappellen, P., Charlet, L. and Stumm, W., and Wersin, P. (1993) A surface complexation model of the carbonate mineral-aqueous solution interface. Geochim.Cosmochim.Acta 54, 3505–3518.

    Google Scholar 

  • Waser, J. (1968) Pauling's electroneutrality principle and the beginner. In Structural chemistry and molecular biology, (eds. A. Rich and N. Davidson), W. H. Freeman, pp. 675–684.

  • Weisenhorn, A. L., Hansma, P. K., Albrecht, T. R., and Quate, C. F. (1989) Forces in atomic force microscopy in air and water. Appl.Phys.Lett.54, 2651–2653.

    Google Scholar 

  • Weisenhorn, A. L., Macdougall, J. E., Gould, S. A. C., Cox, S. D., Wise, W. S., Massie, J., Maivald, P., Elings, V. P., Stucky, G. D., and Hansma, P. K. (1990) Imaging and manipulating molecules on a zeolite surface with an atomic force microscope. Science 247, 1330–1333.

    Google Scholar 

  • Wicks, F. J., Henderson, G. S., and Vrdoljak, G. A. (1994) Atomic and molecular scale images of layered and other mineral surfaces. In Scanning Probe Microscopy of Clay Minerals(eds. K. L. Nagy and A. E. Blum) Clay Minerals Society Workshop Lectures Vol. 7, pp. 92–138.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraki, R., Rock, P.A. & Casey, W.H. Dissolution Kinetics of Calcite in 0.1 M NaCl Solution at Room Temperature: An Atomic Force Microscopic (AFM) Study. Aquatic Geochemistry 6, 87–108 (2000). https://doi.org/10.1023/A:1009656318574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009656318574

Navigation