Skip to main content
Log in

Apoptosis in ventricular myocytes: the role of tumor suppressor proteins

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis or programmed cell death is an important physiologic event crucial for the selective removal of damaged or unwanted cells from body tissues. In the cardiovascular system, apoptosis has been observed in the vasculature and myocardium. Untimely or inappropriate myocardial cell loss through an apoptotic process may contribute to ventricular remodeling and the ultimate demise of ventricular function following injury. Therapeutic interventions designed to modulate or prevent myocardial apoptotic cell loss may therefore prove beneficial in maintaining cardiac function. Incite into the molecular mechanisms that govern apoptosis in mammalian cells has led to the identification of several key factors that promote or prevent the apoptotic process. In this report, we discuss putative regulators of cardiac cell apoptosis with specific reference to the tumor suppressor proteins, p53 and Rb. The interplay between these factors, as well as the anti-apoptotic molecules related to the Bcl-2 the family are discussed in the context of the heart under normal and disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 1992; 11: 95-103.

    Google Scholar 

  2. Wyllie AH. Death from inside out: an overview. Philos Trans R Soc Lond B Biol Sci 1994; 345: 237-241.

    Google Scholar 

  3. Martin SJ, Green DR. Apoptosis and cancer: the failure of controls on cell death and cell survival. Crit Rev Oncol Hematol 1995; 18: 137-153.

    Google Scholar 

  4. Cohen JJ. Apoptosis. Immunol Today 1993; 14: 126-130.

    Google Scholar 

  5. Cohen JJ. Apoptosis: physiologic cell death. J Lab Clin Med 1994; 124: 761-765.

    Google Scholar 

  6. Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 1993; 14: 133-151.

    Google Scholar 

  7. Cotter TG, al Rubeai M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol 1995; 13: 150-155.

    Google Scholar 

  8. Perry G, Nunomura A. Apoptosis and Alzheimer's disease (letter). Science 1998; 282: 1268-1269.

    Google Scholar 

  9. Terai C, Kornbluth RS, Pauza CD, Richman DD, Carson DA. Apoptosis as a mechanism of cell death in cultured T lymphoblasts acutely infected with HIV-1. J Clin Invest 1991; 87: 1710-1715.

    Google Scholar 

  10. Hackam AS, Singaraja R, Wellington CL, Metzler M, McCutcheon K, Zhang T, Kalchman M, Hayden MR. The influence of huntingtin protein size on nuclear localization and cellular toxicity. J Cell Biol 1998; 141: 1097-1105.

    Google Scholar 

  11. Haber DA. Telomeres, cancer, and immortality. N Engl J Med 1995; 332: 955-956.

    Google Scholar 

  12. Yonish Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352: 345-347.

    Google Scholar 

  13. Hollstein M, Rice K, Greenblatt MS, Soussi T, Fuchs R, Sorlie T, Hovig E, Smith-Sorensen B, Montesano R, Harris CC. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res 1994; 22: 3551-3555.

    Google Scholar 

  14. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Jr, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992; 356: 215-221.

    Google Scholar 

  15. White E. Death-defying acts: a meeting review on apoptosis. Genes Dev 1993; 7: 2277-2284.

    Google Scholar 

  16. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes [see comments]. Nature 1993; 362: 847-849.

    Google Scholar 

  17. Yonish Rouach E, Grunwald D, Wilder S, Kimchi A, May E, Lawrence JJ, May P, Oren M. p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol 1993; 13: 1415-1423.

    Google Scholar 

  18. Kirshenbaum LA, de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 1997; 96: 1580-1585.

    Google Scholar 

  19. Long X, Crow MT, Sollott SJ, O'Neill L, Menees DS, de Lourdes Hipolito M, Boluyt MO, Asai T, Lakatta EG. Enhanced expression of p53 and apoptosis induced by blockade of the vacuolar proton ATPase in cardiomyocytes. J Clin Invest 1998; 101: 1453-1461.

    Google Scholar 

  20. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 1994; 8: 9-22.

    Google Scholar 

  21. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809-819.

    Google Scholar 

  22. Jost CA, Marin MC, Kaelin WG, Jr. p73 is a human p53-related protein that can induce apoptosis (see comments). Nature 1997; 389: 191-194.

    Google Scholar 

  23. Marin MC, Jost CA, Irwin MS, DeCaprio JA, Caput D, Kaelin WG, Jr. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol Cell Biol 1998; 18: 6316-6324.

    Google Scholar 

  24. Prives C. How loops, beta sheets, and alpha helices help us to understand p53. Cell 1994; 78: 543-546.

    Google Scholar 

  25. Prives C, Bargonetti J, Farmer G, Ferrari E, Friedlander P, Wang Y, Jayaraman L, Pavletich N, Hubscher U. DNA-binding properties of the p53 tumor suppressor protein. Cold Spring Harb Symp Quant Biol 1994; 59: 207-213.

    Google Scholar 

  26. el Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169-1174.

    Google Scholar 

  27. Perry ME, Levine AJ. P53 and mdm-2: interactions between tumor suppressor gene and oncogene products. Mt Sinai J Med 1994; 61: 291-299.

    Google Scholar 

  28. Hedborg F, Ohlsson R, Sandstedt B, Grimelius L, Hoehner JC, Pahlman S. IGF2 expression is a marker for paraganglionic/SIF cell differentiation in neuroblastoma. Am J Pathol 1995; 146: 833-847.

    Google Scholar 

  29. Buckbinder L, Talbott R, Velasco Miguel S, Takenaka I, Faha B, Seizinger BR, Kley N. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 1995; 377: 646-649.

    Google Scholar 

  30. Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P. p53 Induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res 1997; 234: 57-65.

    Google Scholar 

  31. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293-299.

    Google Scholar 

  32. Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1-6.

    Google Scholar 

  33. Korsmeyer SJ. Regulators of cell death. Trends Genet 1995; 11: 101-105.

    Google Scholar 

  34. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322-1326.

    Google Scholar 

  35. Korsmeyer SJ. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu Rev Immunol 1992; 10: 785-807.

    Google Scholar 

  36. Agocha A, Lee HW, Eghbali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of transforming growth factor-beta1, thyroid hormone, angiotensin II and basic fibroblast growth factor. J Mol Cell Cardiol 1997; 29: 2233-2244.

    Google Scholar 

  37. Yin XM, Oltvai ZN, Korsmeyer SJ. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax (see comments). Nature 1994; 369: 321-323.

    Google Scholar 

  38. Tanaka S, Saito K, Reed JC. Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J Biol Chem 1993; 268: 10920-10926.

    Google Scholar 

  39. Yin XM, Oltvai ZN, Korsmeyer SJ. Heterodimerization with Bax is required for Bcl-2 to repress cell death. Curr Top Microbiol Immunol 1995; 194: 331-338.

    Google Scholar 

  40. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 1993; 4: 327-332.

    Google Scholar 

  41. Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 1998; 426: 111-116.

    Google Scholar 

  42. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX, Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661-1672.

    Google Scholar 

  43. Macdonald G, Shi L, Velde CV, Lieberman J, Greenberg AH. Mitochondria-dependent and-independent regulation of granzyme B-induced apoptosis (in process citation). J Exp Med 1999; 189: 131-144.

    Google Scholar 

  44. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998; 17: 37-49.

    Google Scholar 

  45. Huang DC, Adams JM, Cory S. The conserved N-terminal BH4 domain of Bcl-2 homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 1998; 17: 1029-1039.

    Google Scholar 

  46. Pan G, O'Rourke K, Dixit VM. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 1998; 273: 5841-5845.

    Google Scholar 

  47. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc Natl Acad Sci USA 1998; 95: 4386-4391.

    Google Scholar 

  48. Sardet C, Vidal M, Cobrinik D, Geng Y, Onufryk C, Chen A, Weinberg RA. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc Natl Acad Sci USA 1995; 92: 2403-2407.

    Google Scholar 

  49. Strom DK, Cleveland JL, Chellappan S, Nip J, Hiebert SW. E2F-1 and E2F-3 are functionally distinct in their ability to promote myeloid cell cycle progression and block granulocyte differentiation. Cell Growth Differ 1998; 9: 59-69.

    Google Scholar 

  50. Hijmans EM, Voorhoeve PM, Beijersbergen RL, van't Veer LJ, Bernards R. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol Cell Biol 1995; 15: 3082-3089.

    Google Scholar 

  51. Benedict WF, Murphree AL, Banerjee A, Spina CA, Sparkes MC, Sparkes RS. Patient with 13 chromosome deletion: evidence that the retinoblastoma gene is a recessive cancer gene. Science 1983; 219: 973-975.

    Google Scholar 

  52. Hsieh TC, Xu W, Chiao JW. Growth regulation and cellular changes during differentiation of human prostatic cancer LNCaP cells as induced by T lymphocyte-conditioned medium. Exp Cell Res 1995; 218: 137-143.

    Google Scholar 

  53. Hamel PA, Phillips RA, Muncaster M, Gallie BL. Speculations on the roles of RB1 in tissue-specific differentiation, tumor initiation, and tumor progression. FASEB J 1993; 7: 846-854.

    Google Scholar 

  54. Venter DJ, Bevan KL, Ludwig RL, Riley TE, Jat PS, Thomas DG, Noble MD. Retinoblastoma gene deletions in human glioblastomas. Oncogene 1991; 6: 445-448.

    Google Scholar 

  55. Lee EY, To H, Shew JY, Bookstein R, Scully P, Lee WH. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 1988; 241: 218-221.

    Google Scholar 

  56. Horowitz JM, Park SH, Bogenmann E, Cheng JC, Yandell DW, Kaye FJ, Minna JD, Dryja TP, Weinberg RA. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 1990; 87: 2775-2779.

    Google Scholar 

  57. Weinberg RA. The molecular basis of oncogenes and tumor suppressor genes. Ann NY Acad Sci 1995; 758: 331-338.

    Google Scholar 

  58. Mymryk JS, Shire K, Bayley ST. Induction of apoptosis by adenovirus type 5 E1A in rat cells requires a proliferation block. Oncogene 1994; 9: 1187-1193.

    Google Scholar 

  59. Lowe SW, Ruley HE. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 1993; 7: 535-545.

    Google Scholar 

  60. Debbas M, White E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 1993; 7: 546-554.

    Google Scholar 

  61. Kirshenbaum LA, Schneider MD. Adenovirus E1A represses cardiac gene transcription and reactivates DNA synthesis in ventricular myocytes, via alternative pocket protein-and p300-binding domains. J Biol Chem 1995; 270: 7791-7794.

    Google Scholar 

  62. Moran E, Zerler B, Harrison TM, Mathews MB. Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 1986; 6: 3470-3480.

    Google Scholar 

  63. Kirshenbaum LA, Abdellatif M, Chakraborty S, Schneider MD. Human E2F-1 reactivates cell-cycle progreesion in ventricular myocytes and represses cardiac gene transcription. Developmental Biology 1996; 179: 402-411.

    Google Scholar 

  64. Dobrowolski SF, Stacey DW, Harter ML, Stine JT, Hiebert SW. An E2F dominant negative mutant blocks E1A induced cell cycle progression. Oncogene 1994; 9: 2605-2612.

    Google Scholar 

  65. Suda K, Holmberg EG, Nornes HO, Neuman T. DNA synthesis is induced in adult neurons after expression of E2F1 and E1A. Neuroreport 1994; 5: 1749-1751.

    Google Scholar 

  66. Kowalik TF, DeGregori J, Schwarz JK, Nevins JR. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol 1995; 69: 2491-2500.

    Google Scholar 

  67. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994; 75: 426-433.

    Google Scholar 

  68. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O'Neill L, Cirielli C, Lakatta EG, Crow MT. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997; 99: 2635-2643.

    Google Scholar 

  69. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996; 79: 949-956.

    Google Scholar 

  70. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994; 94: 1621-1628.

    Google Scholar 

  71. Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning rabbit cardiomyocytes: role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996; 97: 2391-2398.

    Google Scholar 

  72. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor (see comments). Circulation 1998; 97: 276-281.

    Google Scholar 

  73. Kajstura J, Cheng W, Reiss K, Clark WAR, Sonnenblick EH, Krajewski S, Reed JC, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infartc size in rats. Laboratory Investigation 1996; 74: 86-107.

    Google Scholar 

  74. Li P, Hofmann PA, Li B, Malhotra A, Cheng W, Sonnenblick EH, Meggs LG, Anversa P. Myocardial infarction alters myofilament calcium sensitivity and mechanical behavior of myocytes. Am J Physiol 1997; 272: H360-70.

    Google Scholar 

  75. Akiyama K, Gluckman TL, Terhakopian A, Jinadasa PM, Narayan S, Singaswamy S, Massey B, 3rd, Bing RJ. Apoptosis in experimental myocardial infarction in situ and in the perfused heart in vitro. Tissue Cell 1997; 29: 733-743.

    Google Scholar 

  76. Narula J, Kharbanda S, Khaw BA. Apoptosis and the heart. Chest 1997; 112: 1358-1362.

    Google Scholar 

  77. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure (see comments). N Engl J Med 1996; 335: 1182-1189.

    Google Scholar 

  78. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation 1994; 90: 556-573.

    Google Scholar 

  79. Sabbah HN, Sharov VG, Goldstein S. Programmed cell death in the progression of heart failure. Ann Med 1998; 30(Suppl 1): 33-38.

    Google Scholar 

  80. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 2703-2711.

    Google Scholar 

  81. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, Anversa P. Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 1995; 219: 110-121.

    Google Scholar 

  82. Agah R, Kirshenbaum LA, Abdellatif M, Truong LD, Chakraborty S, Michael LH, Schneider MD. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 1997; 100: 2722-2728.

    Google Scholar 

  83. Bialik S, Green DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997; 100: 1363-1372.

    Google Scholar 

  84. Ehinger M, Bergh G, Johnsson E, Baldetorp B, Olsson I, Gullberg U. p53-dependent and-independent differentiation of leukemic U-937 cells: relationship to cell cycle control. Exp Hematol 1998; 26: 1043-1052.

    Google Scholar 

  85. McDonald AC, Brown R. Induction of p53-dependent and p53-independent cellular responses by topoisomerase 1 inhibitors. Br J Cancer 1998; 78: 745-751.

    Google Scholar 

  86. Chandler JM, Alnemri ES, Cohen GM, MacFarlane M. Activation of CPP32 and Mch3 alpha in wild-type p53-induced apoptosis. Biochem J 1997; 322: 19-23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regula, K., Kirshenbaum, L.A. Apoptosis in ventricular myocytes: the role of tumor suppressor proteins. Apoptosis 4, 229–234 (1999). https://doi.org/10.1023/A:1009640124029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009640124029

Navigation