Skip to main content
Log in

Mass Spectrometric Study of the Vaporization Kinetics of Potassium Bromide Single Crystals

  • Published:
Journal of Materials Synthesis and Processing

Abstract

A mass-spectrometric method was used to investigate the kinetics of the vaporization of potassium bromide single crystals. In electron-impact-ionization mass spectra of molecular fluxes vaporized from a free-surface of KBr, ions of K+, KBr+, Br+, and K2Br+ originating from KBr and K2Br2 molecular precursors were detected in the temperature range 724–918 K. The temperature dependencies of ion currents, ln IiT − 1/ T, of the most abundant ions (K+, KBr+, and K2Br+) revealed a departure from the linearity. From a comparison between the equilibrium and nonequilibrium vaporization rates, it was concluded that the value of the vaporization coefficient for monomers and dimers passes through a maximum at about 800 and 825 K, respectively. An electron-impact-fragmentation pattern of KBr molecules, I(K+)/I(KBr+), was observed to pass reproducibly through a minimum at the temperatures of about 800 to 830 K. In the fluxes from a free surface and from one inside a Knudsen cell, the dimer-to-monomer ratios were found to vary with temperature in different ways. The difference in the equilibrium and nonequilibrium rates of vaporization, the temperature dependence of the fragmentation pattern, and the mechanism of association reactions are discussed in light of the terrace-ledge-kink and surface-charge models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. M. Rosenblatt, in Treatise on Solid State Chemistry, Vol. 6A: Surfaces I, N. B. Hannay, ed. (Plenum Press, New York, 1976), pp. 165–239.

    Google Scholar 

  2. D. W. Short, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 57, 1381 (1972).

    Google Scholar 

  3. J. E. McVicker, R. A. Rapp, and J. P. Hirth, J. Chem. Phys. 63, 2645 (1975).

    Google Scholar 

  4. Z. A. Munir and J. P. Hirth, J. Electron. Mater. 6, 409 (1977).

    Google Scholar 

  5. I. V. Samarasekera and Z. A. Munir, High Temp. Sci. 10, 155 (1978).

    Google Scholar 

  6. R. H. Wagoner and J. P. Hirth, J. Chem. Phys. 67, 3074 (1977).

    Google Scholar 

  7. S. T. Lam and Z. A. Munir, J. Crystal Growth 47, 373 (1979); High Temp. Sci. 12, 249 (1980); J. Crystal Growth 51, 227 (1981).

    Google Scholar 

  8. L. S. Seacrist and Z. A. Munir, High Temp. Sci. 3, 340 (1971).

    Google Scholar 

  9. R. B. Leonard and Searcy, A. W., J. Appl. Phys. 42, 4047 (1971).

    Google Scholar 

  10. G. A. Somorjai and J. E. Lester, J. Chem. Phys. 43, 1450 (1965).

    Google Scholar 

  11. Z. A. Munir and T. T. Nguyen, Phil. Mag. A47, 105 (1983).

    Google Scholar 

  12. Z. A. Munir, Res Mechan. 11, 1 (1984).

    Google Scholar 

  13. Z. A. Munir and A. A. Yeh, Phil. Mag. A56, 63 (1987).

    Google Scholar 

  14. M. F. Butman, A. A. Smirnov, and L. S. Kudin, Appl. Surf. Sci. 126, 185 (1998).

    Google Scholar 

  15. J. E. Lester and G. A. Somorjai, J. Chem. Phys. 49, 2940 (1968).

    Google Scholar 

  16. C. T. Ewing and K. H. Stern, J. Phys. Chem. 79, 2007 (1975).

    Google Scholar 

  17. J. Berkowitz and W. A. Chupka, J. Chem. Phys. 20, 653 (1958).

    Google Scholar 

  18. Z. A. Munir, J. Mater. Sci. 22, 2221 (1987).

    Google Scholar 

  19. L. N. Gorokhov, Thesis of Doctor of Chemistry, Moscow Univ., 1972.

  20. V. P. Glushko, Termodinamicheskie Svoistva Individual'nykh Veshchestv (Thermodynamic Properties of Individual Substances), Vol. 4 (Nauka, Moscow, 1984).

    Google Scholar 

  21. A. A. Dronin, L. N. Gorokhov, Teplophizika Vysokikh Temperatur (Russ. High-Temp. Phys.) 10, 49 (1972).

    Google Scholar 

  22. R. B. Poeppel and J. M. Blakely, Surf. Sci. 15, 507 (1969).

    Google Scholar 

  23. S. P. Konovalov and V. G. Solomonic, Zh. Strukt. Khim. (Russ. J. Struct. Chem.) 23, 90 (1982).

    Google Scholar 

  24. J. P. Hirth and G. M. Pound, Condensation and Evaporation (Pergamon Press, Oxford, 1963), p. 77.

    Google Scholar 

  25. H. Dabringhaus and H. J. Meyer, J. Crystal Growth 40, 139 (1977); J. Crystal Growth 61, 91 (1983); J. Crystal Growth 61, 95 (1983).

    Google Scholar 

  26. R. Helmrich and H. Dabringhaus, J. Crsytal Growth 169, 279 (1996).

    Google Scholar 

  27. T. Guella, T. M. Miller, J. A. D. Stockdale, B. Bederson, and L. Vuscovic, J. Chem. Phys. 94, 6857 (1991).

    Google Scholar 

  28. L. B. Harris and J. Fiasson, J. Phys. C (Solid State Phys.) 18, 4585 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butman, M.F., Smirnov, A.A., Kudin, L.S. et al. Mass Spectrometric Study of the Vaporization Kinetics of Potassium Bromide Single Crystals. Journal of Materials Synthesis and Processing 8, 55–63 (2000). https://doi.org/10.1023/A:1009473711827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009473711827

Navigation