Skip to main content
Log in

Spermatozoa of the Loach Misgurnus fossilis in the Identification of New Centrosome Proteins

  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

We studied the possibility of using the spermatozoa of the loach Misgurnus fossilis L. in the identification of centrosome proteins. It has been shown that the centrosome of the loach spermatozoa consists of a pair of centrioles of the standard structure and contains the marker protein γ-tubulin, cytoplasmic microtubules branch out from it, and it does not contain any additional structures characteristic of the centrosomes of spermatozoa of many other fishes. A preparation enriched with intact centrosomes was obtained from the loach spermatozoa. These centrosomes contained γ-tubulin, although they had lost their ability to induce the polymerization of microtubules. The preparation of loach centrosomes was successfully used to obtain a set of monoclonal antibodies against the mammalian centrosome. A new protein kinase LOSTEK was identified with the help of one of these monoclonal antibodies, SN2-3D2, which was localized in the centrosome and then on microtubules in both loach spermatozoa and cultured mammalian cells. Hence, the loach spermatozoa are a promising means to identify new proteins in the mammalian centrosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, R.G. and Floyd, A.K., Electrophoretic Analysis of Basal Body (Centriole) Proteins, Biochemistry, 1980, vol. 19, pp. 5625-5631.

    Google Scholar 

  • Billard, R., Spermiogenesis in the Rainbow Trout (Salmo gairdneri): An Ultrastructural Study, Cell Tissue Res., 1983, vol. 233, pp. 265-284.

    Google Scholar 

  • Blomberg-Wirschell, M. and Doxsey, S.J., Rapid Isolation of Centrosomes, Methods Enzymol., 1998, vol. 298, pp. 228-238.

    Google Scholar 

  • Bornens, M., Paintrand, M., Berges, J., et al., Structural and Chemical Characterization of Isolated Centrosomes, Cell Motil. Cytoskeleton, 1987, vol. 8, pp. 238-249.

    Google Scholar 

  • Bouckson-Castaing, V., Moudjou, M., Ferguson, D.J., et al., Molecular Characterization of Ninein, a New Coiled-Coil Protein of the Centrosome, J. Cell Sci., 1996, vol. 109, pp. 179-190.

    Google Scholar 

  • Brusle, S., Ultrastructure of Spermiogenesis in Liza aurata risso, 1810 (Teleostei, Mugilidae), Cell Tissue Res., 1981, vol. 217, pp. 415-424.

    Google Scholar 

  • Celis, A., Dejgaard, K., and Celis, R., Production of Mouse Monoclonal Antibodies, Cell Biology: A Laboratory Handbook, New York: Academic, 1994, pp. 269-277.

    Google Scholar 

  • Dutcher, S.K., Purification of Basal Bodies and Basal Body Complexes from Chlamydomonas reinhardtii, Methods Cell Biol., 1995, vol. 47, pp. 323-324.

    Google Scholar 

  • Fais, D.A., Nadezhdina, E.S., and Chentsov, Yu.S., The Centriolar Rim. The Structure That Maintains the Configuration of Centrioles and Basal Bodies in the Absence of Their Microtubules, Exp. Cell Res., 1986, vol. 164, pp. 27-34.

    Google Scholar 

  • Fuller, S.D., Gowen, B.E., Reinsch, S.J., et al., The Core of the Mammalian Centriole Contains γ-Tubulin, Curr. Biol., 1995, vol. 5, pp. 1384-1393.

    Google Scholar 

  • Graf, R., Euteneuer, U., Ueda, M., and Schliwa, M., Isolation of Nucleation-Competent Centrosomes from Dictyostelium discoideum, Eur. J. Cell Biol., 1998, vol. 76, pp. 167-175.

    Google Scholar 

  • Jamieson, B.G., Complex Spermatozoon of the Live-Bearing Half-Beak, Hemirhamphodon pogonognathus (Bleeker): Ultrastructural Description (Euteleostei, Atherinomorpha, Beloniformes), Gamete Res., 1989, vol. 24, pp. 247-259.

    Google Scholar 

  • Joswig, G., Petzelt, S., and Werner, D., Murine cDNAs Coding for Centrosomal Antigen Centrosomin A, J. Cell Sci., 1991, vol. 98, pp. 37-43.

    Google Scholar 

  • Khodjakov, A., Cole, R.W., Oakley, B.R., and Rieder, C.L., Centrosome-Independent Mitotic Spindle Formation in Vertebrates, Curr. Biol., 2000, vol. 10, pp. 59-67.

    Google Scholar 

  • Klotz, S., Dabauvalle, M.C., Paintrand, M., et al., Partenogenesis in Xenopus Eggs Requires Centrosomal Integrity, J.?Cell Biol., 1990, vol. 110, pp. 405-415.

    Google Scholar 

  • Komesle, S., Tournier, F., Paintrand, M., et al., Mass Isolation of Calf Thymus Centrosomes: Identification of a Specific Configuration, J. Cell Biol., 1989, vol. 109, pp. 2869-2878.

    Google Scholar 

  • Kuriyama, R., Activity and Stability of Centrosomes in Chinese Hamster Ovary Cells in Nucleation of Microtubules in vitro, J. Cell Sci., 1984, vol. 66, pp. 277-295.

    Google Scholar 

  • Kuriyama, R. and Enstrud, K., Obtaining Antibodies to Spindle Components, Methods Cell Biol., 1999, vol. 61, pp. 233-244.

    Google Scholar 

  • Kuriyama, R., Kofron, M., Essener, R., et al., Characterization of a Minus End-Directed Kinesin-Like Motor Protein from Cultured Mammalian Cells, J. Cell Biol., 1995, vol. 129, pp. 1049-1059.

    Google Scholar 

  • Maller, J., Poccia, D., Nishioka, D., et al., Spindle Formation and Cleavage in Xenopus Eggs Injected with Centriole-Containing Fractions from Sperm, Exp. Cell Res., 1976, vol. 99, pp. 285-294.

    Google Scholar 

  • Manandhar, G., Simerly, S., Salisbury, L., and Schatten, G., Centriole and Centrin Degeneration during Mouse Spermiogenesis, Cell Motil. Cytoskeleton, 1999, vol. 43, pp. 137-144.

    Google Scholar 

  • Maniotis, A. and Schliwa, M., Microsurgical Removal of Centrosomes Blocks Cell Reproduction and Centriole Generation in BSC-1 Cells, Cell, 1991, vol. 67, pp. 495-504.

    Google Scholar 

  • Mitchison, T.J. and Kirschner, M.W., Isolation of Mammalian Centrosomes, Methods Enzymol., 1986, vol. 134, pp. 261-268.

    Google Scholar 

  • Mitina, N.A., Ostrovskaya, M.V., and Shtein-Margolina, V.A., A Comparative Study of Structure and Protein Composition of the Centrioles in Sturgeon and Salmon Spermatozoa, Prikl. Biokhim. Mikrobiol., 1992, vol. 28, no. 3, pp. 462-467.

    Google Scholar 

  • Moritz, M., and Alberts, B.M., Isolation of Centrosomes from Drosophila Embryos, Methods Cell Biol., 1999, vol. 61, pp. 1-12.

    Google Scholar 

  • Moudjou, M., Bornens, M., Method of Centrosome Isolation from Cultured Animal Cells, Cell Biology, San Diego: Academic, 1998, vol. 2, pp. 111-119.

    Google Scholar 

  • Nadezhdina, E.S., Fais, D., and Chentsov, Yu.S., Partial Puri-fication of Centrioles from Spleen Cells, Cell Biol. Int. Rep., 1978, vol. 2, pp. 601-606.

    Google Scholar 

  • Nadezhdina, E.S., Bukharova, T.B., Koretsky, V.V., et al., Identification of New Molecular Components of Microtubules and Centrosomes, Cell Biol. Int. Rep., 1997, vol. 21, pp. 885-887.

    Google Scholar 

  • Nadezhdina, E.S., Skoblina, M.N., Fais, D., and Chentsov, Yu.S., Exclusively Juvenile Centrioles in Xenopus laevis Oocytes Injected with Preparations of Mature Centrioles, Microsc. Res. Tech., 1999, vol. 44, pp. 430-434.

    Google Scholar 

  • Oakley, C.E. and Oakley, B.R., Identification of γ-Tubulin, a New Member of the Tubulin Superfamily Encoded by mipA Gene of Aspergillus nidulans, Nature, 1989, vol. 338, pp. 662-664.

    Google Scholar 

  • Palazzo, R.E. and Vogel, J.M., Isolation of Centrosomes from Spisula solidissima Oocytes, Methods Cell Biol., 1999, vol. 61, pp. 35-56.

    Google Scholar 

  • Palermo, G., Munne, S., and Cohen, J., The Human Zygote Inherits Its Mitotic Potential from the Male Gamete, Hum. Reprod., 1994, vol. 9, pp. 1220-1225.

    Google Scholar 

  • Perret, E., Albert, M., Bordes, N., et al., Microtubular Spindle and Centrosome Structures during the Cell Cycle in a Dinoflagellate Crypthecodinium cohnii B.: An Immunocytochemical Study, Biosystems, 1991, vol. 25, pp. 53-65.

    Google Scholar 

  • Rodionov, V.I. and Borisy, G.G., Self-Centring Activity of Cytoplasm, Nature, 1997, vol. 13, pp. 170-173.

    Google Scholar 

  • Rodionov, V., Nadezhdina, E., and Borisy, G., Centrosomal Control of MT Dynamics, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 115-120.

    Google Scholar 

  • Ryu, J.H., Essner, R., Ohta, T., and Kuriyama, R., Filamentous Polymers Induced by Overexpression of a Novel Centrosomal Protein, Cep135, Microsc. Res. Techn., 2000, vol.49, pp. 478-486.

  • Sellitto, S., Kimble, M., and Kuriyama, R., Heterogeneity of Microtubule-Organizing Center Components as Revealed by Monoclonal Antibodies to Mammalian Centrosomes and to Nucleus-Associated Bodies from Dictyostelium, Cell Motil. Cytoskeleton, 1992, vol. 22, pp. 7-24.

    Google Scholar 

  • Solov'yanova, O.B., Porechnaya, M.G., and Nadezhdina, E.S., Use of Monoclonal Antibodies for Identification of a Protein of Microtubules Localized Predominantly on the Centrosome and in the Mitotic Spindle, Dokl. Akad. Nauk SSSR, 1989, vol. 309, no. 2, pp. 464-467.

    Google Scholar 

  • Tassin, A.M., Celati, S., Paintrand, M., and Bornens, M., Identification of an Spc110p-Related Protein in Vertebrates, J.?Cell Sci., 1997, vol. 110, pp. 2533-2545.

    Google Scholar 

  • Tassin, A M., Celati, S., Moudjou, M., and Bornens, M., Characterization of the Human Homologue of the Yeast spc98p and Its Association with γ-Tubulin, J. Cell Biol., 1998, vol. 141, pp. 689-701.

    Google Scholar 

  • Thompson-Coffe, C., Coffe, G., Schatten, H., et al., Cold-Treated Centrosome: Isolation of Centrosomes from Mitotic Sea Urchin Eggs, Production of an Anticentrosomal Antibody, and Novel Ultrastructural Imaging, Cell Motil. Cytoskeleton, 1996, vol. 33, pp. 197-207.

    Google Scholar 

  • Todd, P.R., Ultrastructure of the Spermatozoa and Spermiogenesis in New Zealand Freshwater Eels (Anguillidae), Cell Tissue Res., 1976, vol. 171, pp. 221-232.

    Google Scholar 

  • Vorobjev, I.A. and Nadezhdina, E.S., The Centrosome and Its Role in the Organization of Microtubules, Int. Rev. Cytol., 1987, vol. 106, pp. 227-293.

    Google Scholar 

  • Zinovkina, L.A., Poltaraus, A.B., Solov'yanova, O.B., and Nadezhdina, E.S., Chinese Hamster Protein Homologous to Human Putative Protein Kinase KIAA0204 Is Associated with Nuclei, Microtubules and Centrosomes in CHO-K1 Cells, FEBS Lett., 1997, vol. 414, pp. 135-139.

    Google Scholar 

  • Zinovkina, L.A., Poltaraus, A.B., Solov'yanova, O.B., and Nadezhdina, E.S., A Proposed New Protein Kinase of Mammals Associated with Microtubules, Mol. Biol., 1998, vol. 32, pp. 350-357.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadezhdina, E.S., Zinovkina, L.A., Fais, D. et al. Spermatozoa of the Loach Misgurnus fossilis in the Identification of New Centrosome Proteins. Russian Journal of Developmental Biology 32, 35–43 (2001). https://doi.org/10.1023/A:1009409110276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009409110276

Navigation