Skip to main content
Log in

Combined PI–DAPI staining (CPD) reveals NOR asymmetry and facilitates karyotyping of plant chromosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

This paper presents a preparative and staining procedure for plant mitotic chromosomes that uses a combination of PI (propidium iodide) and DAPI (4′,6-diamidino-2-phenylindol) and which reveals a pattern of high-affinity regions for these fluorochromes. Nucleolar organiser regions (NORs), telomeres and centromeric regions exhibit high PI affinity (red), whereas other chromosomal regions exhibit high affinity for either PI (red) or DAPI (blue). NOR-bearing and other chromosomes are readily distinguished, facilitating karyotyping. The dual staining pattern was observed in all the plants tested. Aspects of NOR size, number and occurrence are discussed. A karyotype of rice metaphase chromosomes is presented, based on their fluorescent banding patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andras SC, Hartman TPV, Marshall JA et al. (1999) A drop-spreading technique to produce cytoplasm-free mitotic preparations from plants with small chromosomes. Chromosome Res 7: 641–647.

    Article  PubMed  CAS  Google Scholar 

  • Applied Imaging International Ltd. web site (www.aii.co.uk/)

  • Arrighi FE, Hsu TC (1971) Localization of heterochromatin in human chromosomes. Cytogenetics 10: 81–86.

    PubMed  CAS  Google Scholar 

  • Bobrow M, Madan K (1973) The effects of various banding procedures on human chromosomes studied with acridine orange. Cytogen Cell Genet 12: 145–156.

    CAS  Google Scholar 

  • Caspersson T, Zech L, Johansson C (1970) Differential banding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60: 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B, Lejeune J (1971) Sur une novelle technique d'analyse du caryotype human. C R Acad Sci Paris 272: 2638–2640.

    CAS  Google Scholar 

  • Fukui K (1986) Standardization of karyotyping plant chromosomes by a newly developed chromosome image analysing system (CHIAS). Theor Appl Genet 72: 27–32.

    Article  Google Scholar 

  • Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81: 589–596.

    Article  Google Scholar 

  • Fukui K, Iijima K (1992) Manual on rice chromosomes. Misc Publ Natl Inst Agrobiol Resources (Japan) 4: 1–25.

    Google Scholar 

  • Galasso I, Pignone D, Perrino P (1993) Cytotaxonomic studies in Vigna. 2. Heterochromatin characterization in Vigna ungulata and 3 related wild species. Caryologia 46: 275–282.

    Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome sizes: a critical assessment. Ann Bot 82: 27–37.

    Article  Google Scholar 

  • Guerra M (1993) Cytogenetics of Rutaceae. 5. High chromosomal variability in Citrus species revealed by CMA DAPI staining. Heredity 71: 234–241.

    Google Scholar 

  • Hanson RE, Zwick MS, Sangdun C et al. (1995) Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome 38: 646–651.

    PubMed  CAS  Google Scholar 

  • Howell WM, Denton TE, Diamond JR (1975) Differential staining of the satellite regions of human acrocentric chromosomes. Experientia 31: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Raska DA, McKnight TD, Islam-Faridi MN et al. (1997) Use of meiotic FISH for identification of a new monosome in Gossypium hirsutum L. Genome 40: 34–40.

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Chapman VM (1991) In situ analysis of centromeric satellite DNA in Mus species crosses. Mam Genome 1: 71–77.

    Article  CAS  Google Scholar 

  • Ohmido N, Fukui K (1995) Physical mapping of rice DNAs by an improved FISH method. JARQ 29: 83–88.

    CAS  Google Scholar 

  • Peterson DG, Lapitan NLV, Stack SM (1999) Localization of single-and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152: 427–439.

    PubMed  CAS  Google Scholar 

  • Schweizer D, Ambros P, Andrle M (1978) Modification of DAPI banding on human chromosomes by prestaining with a DNA-binding oligopeptide, antibiotic distamycin A. Exp Cell Res 111: 327–332.

    Article  PubMed  CAS  Google Scholar 

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2: 971–972.

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT, Evans HJ, Buckland RA (1971) A new technique for distinguishing between human chromosomes. Nature New Biol 232: 31–32.

    PubMed  CAS  Google Scholar 

  • Vaughan HE, Jamilena M, Ruiz Rejón C, Parker JS, Garrido-Ramos MA (1993) Loss of nucleolar organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71: 574–580.

    Google Scholar 

  • Vosa CG (1970) Heterochromatin recognition with fluorochromes. Chromosoma 30: 366–372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andras, S.C., Hartman, T.P.V., Alexander, J. et al. Combined PI–DAPI staining (CPD) reveals NOR asymmetry and facilitates karyotyping of plant chromosomes. Chromosome Res 8, 387–391 (2000). https://doi.org/10.1023/A:1009258719052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009258719052

Navigation