Skip to main content
Log in

The Plausible Aromaticity of 1,8-Naphthalimides: The Enthalpy of Formation of N-Methyl-1,8-Naphthalimide

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In order to understand the aromaticity of 1,8-naphthalimides, the enthalpies of combustion and sublimation of N-methyl-1,8-naphthalimide were determined. The numerical values are −6095.8 ± 3.5 and 109.7 ± 0.8 kJ · mol−1. The enthalpies of formation of condensed and gas phase N-methyl-1,8-naphthalimide are accordingly −306.1 ± 3.9 and −196.4 ± 4.0 kJ · mol−1. It is deduced that naphthalimides enjoy some 40 kJ · mol−1 of aromatic stabilization over that of the maleimides, shown to be nominally destabilized and modestly antiaromatic in our recently published thermochemical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roux, M. V.; Jiménez, P.; Martin-Luengo, M. A.; Dávalos, J. Z.; Sun, Z.; Hosmane, R. S.; Liebman, J. F. J. Org. Chem. 1997, 62, 2732–2737.

    PubMed  Google Scholar 

  2. Pedley, J. B.; Naylor, R. B.; Kirby, S. P. Thermochemical Data of Organic Compounds; 2nd Ed.; Chapman and Hall: London, 1986. All thermochemical data in the current paper refers to the gas phase is from this source unless otherwise said. In the particular, the enthalpies of formation of cyclopentane and cyclopentene come from this source while those of N-methylated phthalimide, maleimide and succinimide come from reference 1.

    Google Scholar 

  3. March, J. Advanced Organic Chemistry, 4th Ed.; Wiley: New York, 1992, p. 44.

    Google Scholar 

  4. Niemz, A.; Rotello, V. M. J. Amer. Chem. Soc. 1997, 119, 6833–6836.

    Google Scholar 

  5. Roux, M. V.; Jiménez, P.; Dávalos, J. Z.; Abboud, J.-L. M.; Molina, M. T. J. Chem. Thermodynamc. 1996, 28, 1029–1288.

    Google Scholar 

  6. Jiménez, P.; Roux, M. V.; Turrióon, C.; Gomis, F. J. Chem. Thermodynam. 1987, 19, 985–992.

    Google Scholar 

  7. Grigoreva, L. P.; Chetkina, L. A. Kristallografiya 1975, 20, 1289.

    Google Scholar 

  8. Hubbard, W. N.; Scott, D. W.; Waddington, G. In Experimental Thermochemistry. Rossini, F. D., Ed.; Interscience: New York, 1956; Chap. 5.

    Google Scholar 

  9. IUPAC, Pure Appl. Chem. 1996, 68, 2339–2359.

    Google Scholar 

  10. Jiménez, P.; Menendez, V.; Roux, M. V.; Turrión, C.; J. Chem. Thermodynamics 1995, 27, 679–683.

    Google Scholar 

  11. Jiménez, P.; Roux, M. V.; Dávalos, J. Z.; Martín-Luengo, M. A.; Abboud, J.-L. M. J. Chem. Thermodynamics 1997, 29, 1281–1288.

    Google Scholar 

  12. Freeman, R. D.; Searcy, A. W. J. Chem. Phys. 1954, 22, 762–763.

    Google Scholar 

  13. Westrum, E. F., Jr. In Combustion Calorimetry. Sunner, S.; Månsson, M.: editors. Pergamon: Oxford. 1979, Chap. 7.

    Google Scholar 

  14. Olofsson, G. Combustion Calorimetry. Sunner, S.; Månsson, M., Eds. Pergamon: Oxford, 1979; Chap. 36.

    Google Scholar 

  15. CODATA J. Chem. Thermodynam. 1976, 8, 603–605.

    Google Scholar 

  16. Roux, M. V.; Jiménez, M. P.; Dávalos, J. Z.; Notario, R.; Abboud, J.-L. M. Chem. Thermodynam. 1999, in press.

  17. Benson, S. W. Thermochemical Kinetics. Method for the Estimation of the Thermochemical Data and Rate Parameters; 2nd edition. Wiley: New York, 1976.

    Google Scholar 

  18. Greenberg, A.; Liebman, J. F. Strained Organic Molecules, Academic Press: New York, 1978, pp. 20, 151.

    Google Scholar 

  19. In fact, by some criteria, CH3 and COOH are very nearly the same size, cf. Colomina, M.; Turrión, P.; Roux, M. V.; Turrión, C.; Jiménez, P.; Roux, M. V.; Liebman, J. F. Struct. Chem. 1994, 5, 141–143.

    Google Scholar 

  20. This plausible assumption is legitimized by the quite general, simple and powerful semiempirical method for estimating enthalpies of vaporization found in Chickos, J. S.; Hesse, D. G.; Liebman, J. F.; Panshin, S. Y. J. Org. Chem. 1988, 53, 3424–3429.

    Google Scholar 

  21. Liebman, J. F.; Crawford, K. S. K.; Slayden, S. W. In Supplement S: The Chemistry of Sulphur-Containing Functional Groups; Patai, S.; Rappoport, Z.; Eds.; Wiley: Chichester, 1993, pp. 197–243.

    Google Scholar 

  22. For the cyclopentane?cyclohexane pair of cycloalkanes, the strain energy difference is 26 kJ.mol-1; for the methylenecycloalkanes, 16; cycloalkanes, 17; 1,3-cycloalkadienes, 7. Indeed, for what is perhaps the most relevant mimic we have for the—CO—NH—CO— substructure, —CH==CH—CO—, the difference is now but 1 kJ.mol-1, cf. Rogers, D. W.; Zhao, Y.; Traetteberg, M.; Hulce, M.; Liebman, J. J. Chem. Thermodyn., 1998, 30, 1393–1400.

    Google Scholar 

  23. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Cheng, G.; Henderson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440–467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, M.V., Jiménez, P., Dávalos, J.Z. et al. The Plausible Aromaticity of 1,8-Naphthalimides: The Enthalpy of Formation of N-Methyl-1,8-Naphthalimide. Structural Chemistry 11, 1–7 (2000). https://doi.org/10.1023/A:1009222404091

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009222404091

Navigation