Skip to main content
Log in

Electroreduction of [Fe(CN)6]3– on a Mercury Electrode: Substantiating Activationless Character of the Process at High Overvoltages

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Experimental cathodic polarization curves, obtained on a mercury electrode in 0.33 mM K3[Fe(CN)6] + 0–1.5 mM KCl solutions, are analyzed quantitatively. On the basis of quantum-chemical calculations of the geometry of species [Fe(CN)6]3– and [Fe(CN)6]4– and charge distributions in them, it is shown that the species interaction with the EDL field is equivalent to a repulsive interaction between effective point charges localized near anion centers in the diffuse layer. The effective Born radius of ferricyanide anion and the solvent reorganization energy are calculated, and inner-sphere constituents of the energy are estimated. These parameters are used for computing theoretical dependences of the transfer coefficient α on the overvoltage via the equation of the quantum-mechanical theory of elementary act. The value of α, determined from corrected Tafel plots, is shown to substantially depend on the assumptions adopted when analyzing the system in the framework of the classical slow-discharge theory; it is close to the theoretical value only if the participation of anion–cation associates formed in the bulk solution is taken into account. Such an approach explains the weak temperature dependence of the process rate. The experimental facts do not contradict theoretical prediction that the reaction occurs in the vicinity of the activationless region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Khoshtaria, D.E., Dolidze, T.D., Krulic, D., et al., J. Phys. Chem., 1998, vol. 102,p. 7800.

    Google Scholar 

  2. Marecek, V., Samec, Z., and Weber, J., J. Electroanal. Chem., 1978, vol. 94,p. 169.

    Google Scholar 

  3. Kitamura, F., Nanbu, N., Ohsaka, T., and Tokuda, K., J. Electroanal. Chem., 1998, vol. 456,p. 113.

    Google Scholar 

  4. Frumkin, A.N. and Florianovich, G.M., Dokl. Akad. Nauk SSSR, 1951, vol. 80,p. 907.

    Google Scholar 

  5. Frumkin, A.N., Petrii, O.A., and Nikolaeva-Fedorovich, N.V., Dokl. Akad. Nauk SSSR, 1959, vol. 128,p. 1006.

    Google Scholar 

  6. Petrii, O.A. and Nikolaeva-Fedorovich, N.V., Zh. Fiz. Khim., 1961, vol. 35,p. 1999.

    Google Scholar 

  7. Levich, V.G., Dokl. Akad. Nauk SSSR, 1949, vol. 67,p. 309.

    Google Scholar 

  8. Vorotyntsev, M.A., Itogi Nauki Tekh., Ser.: Elektrokhimiya, 1979, vol. 14,p. 62.

    Google Scholar 

  9. Tsirlina, G.A., Kuznetsov, A.M., Petrii, O.A., and Kharkats, Yu.I., Elektrokhimiya, 1999, vol. 35,p. 938.

    Google Scholar 

  10. Tobe, M., Inorganic Reaction Mechanisms, London: Thomas Nelson, 1972. Translated under the title Mekhanizmy neorganicheskikh reaktsii,Moscow: Mir, 1975.

    Google Scholar 

  11. Nikolaeva-Fedorovich, N.V., Petrii, O.A., Damaskin, B.B., and Furazhkova, G.A., Vestn. Mosk. Univ., 1962, no. 3,p. 40.

  12. Clack, D.W. and Monshi, M., Mol. Phys., 1976, vol. 31,p. 1607.

    Google Scholar 

  13. Sano, M., Adachi, H., and Yamatera, H., Bull. Chem. Soc. Jpn., 1981, vol. 54,p. 2898.

    Google Scholar 

  14. Becke, A.D., J. Chem. Phys., 1992, vol. 98,p. 1372.

    Google Scholar 

  15. Becke, A.D., J. Chem. Phys., 1992, vol. 98,p. 5648.

    Google Scholar 

  16. Foresman, J.B. and Frisch, A., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian, 1996.

    Google Scholar 

  17. Hay, P.J. and Wadt, W.R., J. Chem. Phys. 1985, vol. 82,p. 270.

    Google Scholar 

  18. Dunning, T.H. and Hay, P.J., in Modern Theoretical Chemistry, vol. 3: Methods of Electronic Structure Theory, Schaefer, H.F., III, Ed., New York: Plenum, 1977,p. 1.

    Google Scholar 

  19. Hehre, W.H., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1971, vol. 56,p. 2257.

    Google Scholar 

  20. Lever, A., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984. Translated under the title Elektronnaya spektroskopiya neorganicheskikh soedinenii, Moscow: Mir, 1987, part 2.

    Google Scholar 

  21. German, E.D. and Kuznetsov, A.M., Itogi Nauki Tekh., Ser.: Kinet. Katal., 1982, vol. 10,p. 115.

    Google Scholar 

  22. Tomassi, J. and Persico, M., Chem. Rev., 1994, vol. 94,p. 202.

    Google Scholar 

  23. Foster, J.P. and Weinhold, F., J. Am. Chem. Soc., 1980, vol. 102,p. 7211.

    Google Scholar 

  24. Reed, A.E., Curtiss, L.A., and Weinhold, F., Chem. Rev. 1988, vol. 88,p. 899.

    Google Scholar 

  25. Nazmutdinov, R.R., Tsirlina, G.A., Kharkats, Yu.I., and Petrii, O.A., J. Phys. Chem. B, 1998, vol. 102,p. 677.

    Google Scholar 

  26. Gorel'sky, S.I., Kotov, V.Yu., and Lever, A.B.P., Inorg. Chem., 1998, vol. 37,p. 4584.

    Google Scholar 

  27. Delahay, P., Double Layer and Electrode Kinetics, New York: Interscience, 1965.

    Google Scholar 

  28. Damaskin, B.B. and Polyanovskaya, N.S., Elektrokhimiya, 1984, vol. 20,p. 90.

    Google Scholar 

  29. Kravtsov, V.I., Ravnovesie i kinetika elektrodnykh reaktsii kompleksov metallov (The Equilibrium and Kinetics of Electrode Reactions Involving Metal Complexes),Leningrad: Khimiya, 1985,p. 76.

    Google Scholar 

  30. Fuoss, R.M., J. Am. Chem. Soc., 1958, vol. 80,p. 5059.

    Google Scholar 

  31. Dogonadze, R.R. and Kuznetsov, A.M., Itogi Nauki Tekh., Ser.: Kinet. Katal., 1978, vol. 5,p. 5.

    Google Scholar 

  32. Tsirlina, G.A., Petrii, O.A., Kharkats, Yu.I., and Kuznetsov, A.M., Elektrokhimiya, 1999, vol. 35,p. 1377.

    Google Scholar 

  33. Damaskin, B.B., Safonov, V.A., and Fedorovich, N.V., J. Electroanal. Chem., 1993, vol. 349,p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsirlina, G.A., Titova, N.V., Nazmutdinov, R.R. et al. Electroreduction of [Fe(CN)6]3– on a Mercury Electrode: Substantiating Activationless Character of the Process at High Overvoltages. Russian Journal of Electrochemistry 37, 15–25 (2001). https://doi.org/10.1023/A:1009067309773

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009067309773

Keywords

Navigation