Skip to main content
Log in

Influence of Nonlocal Effects on Kinetic Parameters of Heterogeneous Charge Transfer Reactions

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of the spatial dispersion of the solvent and of the effect of the electrical field penetration into a metal on the free energy of the solvent reorganization and the activation free energy for heterogeneous charge transfer reactions is studied. The calculations are based on the exactly solved model of a sharp metal/electrolyte interface, the model of a Born sphere for the ion, and the three-mode approximation for the dielectric function of the solvent. In the sharp-interface model, in the case of a mirror reflection, a relationship for the dielectric tensor of a heterogeneous system comprising two contacting media with a plane interface is obtained, along with an expression for the potential created by a point charge. This expression formally coincides with the expression derived earlier by Vorotyntsev and Kornyshev, but it contains true bulk dielectric functions of contacting media. In the model of the Born sphere for the ion and the three-mode approximation for the dielectric function of the solvent, an expression for the potential of image forces, which determines the dependence of the solvent reorganization energy on the distance from the reacting ion to the electrode, is obtained. It is shown that both the reorganization energy and the activation free energy decrease with decreasing distance from the ion to the electrode. The calculation results are compared with estimates of the reorganization energy obtained from experimental data for the reaction Fe3+/Fe2+ and the reaction of the hydronium ion discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Marcus, R.A., J. Chem. Phys., 1965, vol. 43, p. 679.

    Google Scholar 

  2. Medvedev, I.G., Elektrokhimiya, 1979, vol. 15, p. 713.

    Google Scholar 

  3. , I.G., Elektrokhimiya, 1979, vol. 15, p. 886.

    Google Scholar 

  4. Dzhavakhidze, P.G., Kornyshev, A.A., and Krishtalik, L.I., J. Electroanal. Chem., 1987, vol. 228, p. 329.

    Google Scholar 

  5. Vorotyntsev, M.A. and Kornyshev, A.A., Elektrostatika sred s prostranstvennoi dispersiei (Electrostatics of Media with Spatial Dispersion), Moscow: Nauka, 1993.

    Google Scholar 

  6. Kuznetsov, A.M., Elektrokhimiya, 1981, vol. 17, p. 84.

    Google Scholar 

  7. Newton, M.D. and Friedman, H.L., J. Chem. Phys., 1988, vol. 88, p. 4460.

    Google Scholar 

  8. Liu, Y.-P. and Newton, M.D., J. Phys. Chem., 1994, vol. 98, p. 7162.

    Google Scholar 

  9. Marcus, R.A., J. Phys. Chem., 1994, vol. 98, p. 7170.

    Google Scholar 

  10. Kuznetsov, A.M. and Medvedev, I.G., Elektrokhimiya, 1996, vol. 32, p. 1029.

    Google Scholar 

  11. Kuznetsov, A.M. and Medvedev, I.G., J. Phys. Chem. 1996, vol. 100, p. 5721.

    Google Scholar 

  12. Medvedev, I.G., J. Electroanal. Chem., 2000, vol. 481, p. 215.

    Google Scholar 

  13. Kornyshev, A.A. and Sutmann, G., Electron and Ion Transfer in Condensed Media, Kornyshev, A.A., Tosi, M., and Ulstrup, E., Eds., Singapore: World Scientific, 1997, p. 73.

    Google Scholar 

  14. Skaf, M.S., Electron and Ion Transfer in Condensed Media, Kornyshev, A.A., Tosi, M., and Ulstrup, E., Eds., Singapore: World Scientific, 1997, p. 98.

    Google Scholar 

  15. Kornyshev, A.A. and Sutmann, G., J. Electroanal. Chem., 1998, vol. 450, p. 143.

    Google Scholar 

  16. Krishtalik, L.I., J. Electroanal. Chem., 1982, vol. 136, p. 7.

    Google Scholar 

  17. Vorotyntsev, M.A. and Kornyshev, A.A., Zh. Eksp. Teor. Fiz., 1980, vol. 78, p. 1008.

    Google Scholar 

  18. Heinrichs, J., Phys. Rev. B, 1973, vol. 8, p. 1346.

    Google Scholar 

  19. Kleiwer, K.L. and Fuchs, R., Adv. Chem. Phys., 1974, vol. 27, p. 355.

    Google Scholar 

  20. Curtiss, L.A., Halley, J.W., Hautman, J., et al., J. Electrochem. Soc., 1991, vol. 138, p. 2032.

  21. Rose, D.A. and Benjamin, I., J. Chem. Phys., 1994, vol. 100, p. 3545.

    Google Scholar 

  22. Smith, B.B. and Halley, J.W., J. Chem. Phys., 1994, vol. 101, p. 10915.

    Google Scholar 

  23. Schmickler, W., Electrochim. Acta, 1996, vol. 14, p. 2329.

    Google Scholar 

  24. Spravochnik khimika (A Chemist's Handbook), Nikol'skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. 1, p. 382.

  25. Medvedev, I.G., Elektrokhimiya, 1999, vol. 35, p. 878.

    Google Scholar 

  26. Wagman, D.D., Evans, W.H., Parker, V.B., et al., J. Phys. Chem. Ref. Data II, Suppl. 2, 1982.

  27. Martin, R.L., Hay, P.J., and Pratt, L.R., J. Phys. Chem. A, 1998, vol. 102, p. 3565.

    Google Scholar 

  28. Vorotyntsev, M.A. and Kornyshev, A.A., Elektrokhimiya, 1984, vol. 20, p. 3.

    Google Scholar 

  29. Newns, D.M., Phys. Rev. B, 1970, vol. 1, p. 3304.

    Google Scholar 

  30. Leiva, E. and Schmickler, W., J. Electroanal. Chem., 1987, vol. 229, p. 39.

    Google Scholar 

  31. Christmann, K., Surf. Sci. Rep., 1988, vol. 9, p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, I.G. Influence of Nonlocal Effects on Kinetic Parameters of Heterogeneous Charge Transfer Reactions. Russian Journal of Electrochemistry 37, 193–204 (2001). https://doi.org/10.1023/A:1009040110432

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009040110432

Keywords

Navigation