Skip to main content
Log in

Temperature Effect on the Lithium Electrode Kinetics

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of temperature on the kinetics of processes occurring on metallic lithium covered by an ion-conducting passive film, in contact with a LiClO4 solution in propylene carbonate, is studied by the pulsed voltammetry method. Symmetrical anodic and cathodic polarization curves for a lithium electrode in the temperature range –35 to 80°C include a portion of ohmic current j ohm caused by intrinsic ionic conductivity of the passive layer. Following an increase in overvoltage E, the j ohm portion is replaced by a portion of injection current j inj with a characteristic exponential dependence j injE  n, where n ≥ 2 and varies with temperature. The reason for this is presumed to be some structural imperfectness (structural disordering) of the passive-layer material, which leads to the emergence of dispersions in the hop distances and heights of energy barriers for charge carriers. When calculating a current–voltage curve, stochastic charge carrier transport in a disordered solid, which is characterized by a wide dispersion of times of interpoint hops, leads to the exponential function j injE n with n depending on temperature as follows: T: n = 1 + (ab/ T )–2. Experimental data nicely fit this model. Comparing experimental j vs.E curves with theoretical equations permits the determination of a set of microscopic transport parameters, which include the average hop distance and effective localization radius of the charge, the frequency of attempts at hopping, and the average energy-barrier height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kedrinskii, I.A., Dmitrenko, V.E., Povarov, Yu.M., and Grudyanov, I.I., Khimicheskie istochniki toka s litievym anodom (Chemical Power Sources with Lithium Anode), Krasnoyarsk: Krasnoyarsk. Gos. Univ., 1983.

    Google Scholar 

  2. Meibuhr, S.G., J. Electrochem. Soc., 1970, vol. 117, p. 56.

    Google Scholar 

  3. Meibuhr, S.G., J. Electrochem. Soc., 1971, vol. 118, p. 1320.

    Google Scholar 

  4. Jorné, J. and Tobias, C.M., J. Electrochem. Soc., 1974, vol. 121, p. 994.

    Google Scholar 

  5. Scarr, R.F., J. Electrochem. Soc., 1970, vol. 117, p. 295.

    Google Scholar 

  6. Peled, E., J. Electrochem. Soc., 1979, vol. 126, p. 2047.

    Google Scholar 

  7. Peled, E. and Yamin, H., Isr. J. Chem., 1979, vol. 18, p. 131.

    Google Scholar 

  8. Garreau, M., Thevenin, J., and Milandou, B., Proc. Symp. on Lithium Batteries, Washington, DC, 1984, p. 28.

  9. Thevenin, J.G., J. Power Sources, 1985, vol. 14, p. 45.

    Google Scholar 

  10. Thevenin, J.G. and Muller, R.H., J. Electrochem. Soc., 1987, vol. 134, p. 273.

    Google Scholar 

  11. Peled, E., Golodnitsky, D., Ardel, G., and Eshkenazy, V., Electrochim. Acta, 1995, vol. 40, p. 2197.

    Google Scholar 

  12. Peled, E., Golodnitsky, D., and Ardel, G., J. Electrochem. Soc., 1997, vol. 144, p. 208.

  13. Peled, E., Golodnitsky, D., Menachem, C., and Bar-Tow, D., J. Electrochem. Soc., 1998, vol. 145, p. 3482.

    Google Scholar 

  14. Munichandraiah, N., Scanlon, L.G., and Marsh, R.A., J. Power Sources, 1998, vol. 72, p. 203.

    Google Scholar 

  15. Nimon, E.S., Churikov, A.V., Senotov, A.A., et al., Dokl. Akad. Nauk SSSR, 1988, vol. 303, p. 1180.

    Google Scholar 

  16. Nimon, E.S., Churikov, A.V., Senotov, A.A., et al., Fiz. Tverd. Tela (Leningrad), 1989, vol. 31, p. 278.

    Google Scholar 

  17. Nimon, E.S., Churikov, A.V., Shirokov, A.V., et al., J. Power Sources, 1993, vol. 44, p. 365.

    Google Scholar 

  18. Churikov, A.V., Nimon, E.S., and L'vov, A.L., Elektrokhimiya, 1998, vol. 34, p. 669.

    Google Scholar 

  19. Churikov, A.V., L'vov, A.L., Gamayunova, I.M., and Shirokov, A.V., Elektrokhimiya, 1999, vol. 35, p. 858.

    Google Scholar 

  20. Nimon, E.S. and Churikov, A.V., Electrochim. Acta, 1996, vol. 41, p. 1455.

    Google Scholar 

  21. Nimon, E.S., Shirokov, A.V., Kovynev, N.P., and L'vov, A.L., Elektrokhimiya, 1995, vol. 31, p. 355.

    Google Scholar 

  22. Churikov, A.V., L'vov, A.L., and Gamayunova, I.M., Abstracts of Papers, V Mezhd. konf.Fundamental'nye problemy preobrazovaniya energii v litievykh elektrokhimicheskikh sistemakh” (V Int. Conf. “Fundamental Problems of Energy Conversion in Lithium Electrochemical Systems”), St. Petersburg, 1998, p. 9.

  23. Cogley, D.R. and Butler, J.N., J. Phys. Chem., 1968, vol. 72, p. 4568.

    Google Scholar 

  24. Kedrinskii, I.A., Kuznetsova, T.V., Plekhanov, V.P., et al., Elektrokhimiya, 1982, vol. 18, p. 965.

    Google Scholar 

  25. Plekhanov, V.P., Kedrinskii, I.A., and Kuznetsova, T.V., Elektrokhimiya, 1985, vol. 21, p. 555.

    Google Scholar 

  26. Geronov, Y., Schwager, F., and Muller, R.H., J. Electrochem. Soc., 1982, vol. 129, p. 1422.

    Google Scholar 

  27. Linford, R.G. and Hackwood, S., Chem. Rev., 1981, vol. 81, p. 327.

    Google Scholar 

  28. Lampert, M.A. and Mark, P., Current Injection in Solids, New York: Academic, 1970. Translated under the title Inzhektsionnye toki v tverdykh telakh, Moscow: Mir, 1973.

    Google Scholar 

  29. Mark, P. and Helfrich, W., J. Appl. Phys., 1962, vol. 33, p. 205.

    Google Scholar 

  30. Pfister, G. and Scher, H., Adv. Phys. 1978, vol. 27, p. 747.

    Google Scholar 

  31. Scher, H. and Montroll, E., Phys. Rev. B, 1975, vol. 12, p. 2455.

    Google Scholar 

  32. Mott, N.F. and Davis, E.A., Electronic Processes in Non-Crystalline Materials, Oxford: Clarendon, 1979, vol. 1. Translated under the title Elektronnye protsessy v nekristallicheskikh veshchestvakh, Moscow: Mir, 1982, vol. 1.

    Google Scholar 

  33. Shutov, S.D., Iovu, M.A., and Iovu, M.S., Fiz. Tekh. Poluprovodn. (Leningrad), 1979, vol. 13, p. 956.

    Google Scholar 

  34. Arkhipov, V.I., Lebedev, E.A., and Rudenko, A.I., Fiz. Tekh. Poluprovodn. (Leningrad), 1981, vol. 15, p. 712.

    Google Scholar 

  35. Pfister, G., Phylos. Mag., 1977, vol. 36, p. 1147.

    Google Scholar 

  36. Schmidlin, F.W., Phylos. Mag., 1980, vol. 41, p. 535.

    Google Scholar 

  37. Noolandi, J., Solid State Commun., 1977, vol. 24, p. 477.

    Google Scholar 

  38. Chebotin, V.N. and Perfil'ev, M.V., Elektrokhimiya tverdykh elektrolitov (The Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churikov, A.V. Temperature Effect on the Lithium Electrode Kinetics. Russian Journal of Electrochemistry 37, 176–186 (2001). https://doi.org/10.1023/A:1009036009523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009036009523

Keywords

Navigation