Skip to main content
Log in

Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli KO11, carrying the ethanol pathway genes pdc (pyruvate decarboxylase) and adh (alcohol dehydrogenase) from Zymomonas mobilis integrated into its chromosome, has the ability to metabolize pentoses and hexoses to ethanol, both in synthetic medium and in hemicellulosic hydrolysates. In the fermentation of sugar mixtures simulating hemicellulose hydrolysate sugar composition (10.0 g of glucose/l and 40.0 g of xylose/l) and supplemented with tryptone and yeast extract, recombinant bacteria produced 24.58 g of ethanol/l, equivalent to 96.4% of the maximum theoretical yield. Corn steep powder (CSP), a byproduct of the corn starch-processing industry, was used to replace tryptone and yeast extract. At a concentration of 12.5 g/l, it was able to support the fermentation of glucose (80.0 g/l) to ethanol, with both ethanol yield and volumetric productivity comparable to those obtained with fermentation media containing tryptone and yeast extract. Hemicellulose hydrolysate of sugar cane bagasse supplemented with tryptone and yeast extract was also readily fermented to ethanol within 48 h, and ethanol yield achieved 91.5% of the theoretical maximum conversion efficiency. However, fermentation of bagasse hydrolysate supplemented with 12.5 g of CSP/l took twice as long to complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alterthum, F. & Ingram, L.O. 1989 Efficient ethanol production from glucose, lactose and xylose by recombinant Escherichia coli. Applied and Environmental Microbiology 55, 1943-1948.

    CAS  Google Scholar 

  • Amartey, S. & Jeffries, T. 1996 An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicellulose achieved by overliming (calcium hydroxide treatment) and strain adaptation. World Journal of Microbiology and Biotechnology 12, 281-283.

    Article  CAS  Google Scholar 

  • Aristidou, A. & Pentillä, M. 2000 Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology 11, 187-198.

    Article  CAS  Google Scholar 

  • Asghari, A., Bothast, R.J., Doran, J.B. & Ingram, L.O. 1996 Ethanol production from hemicellulose hydrolysates of agricultural residues using genetically engineered Escherichia coli strain KO11. Journal of Industrial Microbiology 16, 42-47.

    Article  CAS  Google Scholar 

  • Barbosa, M.F.S., Beck, M.J., Fein, J.E., Potts, D. & Ingram, L.O. 1992 Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Applied and Environmental Microbiology 58, 1382-1384.

    CAS  Google Scholar 

  • Bothast, R.J. & Saha, B.C. 1997 Ethanol production from agricultural biomass substrates. Advances in Applied Microbiology 44, 261-287.

    CAS  Google Scholar 

  • Dien, B.S., Hespell, R.B., Ingram, L.O. & Bothast, R.J. 1997 Conversion of corn milling fibrous co-products into ethanol by recombinant Escherichia coli strains KO11 and SL40. World Journal of Microbiology and Biotechnology 13, 619-625.

    Article  CAS  Google Scholar 

  • Dien, B.S., Iten, L.B. & Bothast, R.J. 1999 Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. Journal of Industrial Microbiology and Biotechnology 22, 575-581.

    Article  CAS  Google Scholar 

  • Döbereiner, J. & Baldani, V.L.D. 1998 Novas tecnologias: biocom-bustível. Biotecnologia. Ciência e Desenvolvimento 1, 16-18.

    Google Scholar 

  • du Toit, P.J., Olivier, S.P. & Biljon, P.L. 1984 Sugar cane bagasse as a possible source of fermentable carbohydrates. I. Characterization of bagasse with regard to monosaccharide, hemicellulose, and amino acid composition. Biotechnology and Bioengineering 26, 1071-1078.

    Article  CAS  Google Scholar 

  • Dumsday, G.J., Zhou, B., Yaqin, W., Stanley, G.A. & Pamment, N.B. 1999 Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. Journal of Industrial Microbiology & Biotechnology 23, 701-708.

    Article  CAS  Google Scholar 

  • Filho, E.A.B., Baruque, M.G.A., Freire, D.M.G. & Sant'Anna, G.L. 1998 Ethanol from babassu coconut starch: technical and economical aspects. Applied Biochemistry and Biotechnology 70-72, 877-886.

    Google Scholar 

  • Gong, C.S., Cao, N.J., Du, J. & Tsao, G.T. 1999 Ethanol production from renewable resources. Advances in Biochemical Engineering/ Biotechnology 65, 207-241.

    CAS  Google Scholar 

  • Grohmann, K. 1993 Simultaneous saccharification and fermentation of cellulosic substrates to ethanol. In Bioconversion of Forest and Agricultural Residues, ed. Saddler, J.N., pp. 183-209. Wallingford, UK: CAB International. ISBN 0-85198798-2.

    Google Scholar 

  • Grohmann, K., Cameron, R.G. & Buslig, B.S. 1996 Fermentation of orange peel hydrolysates by ethanologenic Escherichia coli: effects of nutritional supplements. Applied Biochemistry and Biotechnology 57-58, 383-388.

    CAS  Google Scholar 

  • Hahn-Hägerdal, B., Jeppsson, H., Olsson, L. & Mohagheghi, A. 1994 An interlaboratory comparison of the performance of ethanol-producing microorganisms in a xylose-rich acid hydrolysate. Applied Microbiology and Biotechnology 41, 62-72.

    Google Scholar 

  • Ingram, L.O., Aldrich, H.C., Borges, A.C.C., Causey, T.B., Martinez, A., Morales, F., Saleh, A., Underwood, S.A., Yomano, L.P., York, S.W., Zaldivar, J. & Zhou, S. 1999 Enteric bacterial catalysts for fuel ethanol production. Biotechnology Progress 15, 855-866.

    Article  CAS  Google Scholar 

  • Ingram, L.O. & Doran, J.B. 1995 Conversion of cellulosic materials to ethanol. FEMS Microbiology Reviews 16, 235-241.

    Article  CAS  Google Scholar 

  • Ingram, L.O., Gomez, P.F., Lai, X., Moniruzzaman, M., Wood, B.E., Yomano, L.P. & York, S.W. 1998a Metabolic engineering of bacteria for ethanol production. Biotechnology and Bioengineering 58, 204-214.

    Article  CAS  Google Scholar 

  • Ingram, L.O., Ohta, K. & Wood, B.E. 1998b Recombinant cells that highly express chromosomally integrated heterologous genes. U.S. Patent No. 5821093.

  • Larsson, S., Reimann, A., Nilvebrant, N.-O. & Jönsoon, L.J. 1999 Comparison of di.erent methods for the detoxification of ligno-cellulose hydrolyzates of spruce. Applied Biochemistry and Biotechnology 77-79, 91-103.

    Article  CAS  Google Scholar 

  • Lawford, H.G. & Rousseau, J.D. 1992 Effect of acetic acid on xylose conversion to ethanol by genetically engineered Escherichia coli. Applied Biochemistry and Biotechnology 34-35, 185-204.

    CAS  Google Scholar 

  • Lawford, H.G. & Rousseau, J.D. 1993 Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli. Applied Biochemistry and Biotechnology 39-40, 301-321.

    Article  CAS  Google Scholar 

  • Lawford, H.G. & Rousseau, J.D. 1995 Loss of ethanologenicity in Escherichia coli B recombinants pLOI297 and KO11 during growth in the absence of antibiotics. Biotechnology Letters 17, 751-756.

    Article  CAS  Google Scholar 

  • Lawford, H.G. & Rousseau, J.D. 1996 Studies on nutrient requirements and cost-e.ective supplements for ethanol production by recombinant Escherichia coli. Applied Biochemistry and Biotechnology 57-58, 307-326.

    Article  CAS  Google Scholar 

  • Lindsay, S.E., Bothast, R.J. & Ingram, L.O. 1995 Improved strains of recombinant Escherichia coli for ethanol production from sugar mixtures. Applied Microbiology and Biotechnology 43, 70-75.

    Article  CAS  Google Scholar 

  • Martinez, A., Rodriguez, M.E., York, S.W., Preston, J.F. & Ingram, L.O. 2000 Effects of Ca(OH)2 treatments (``overliming'') on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering 69, 526-536.

    Article  CAS  Google Scholar 

  • Martinez, A., York, S.W., Yomano, L.P., Pineda, V.L., Davis, F.C., Shelton, J.C. & Ingram, L.O. 1999 Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes in Escherichia coli. Biotechnology Progress 15, 891-897.

    Article  CAS  Google Scholar 

  • Moniruzzaman, M. & Ingram, L.O. 1998 Ethanol production from dilute acid hydrolysate of rice hulls using genetically engineered Escherichia coli. Biotechnology Letters 20, 943-947.

    Article  CAS  Google Scholar 

  • Moniruzzaman, M., York, S.A. & Ingram, L.O. 1998 Effects of process errors on the production of ethanol by Escherichia coli KO11. Journal of Industrial Microbiology and Biotechnology 20, 281-286.

    Article  CAS  Google Scholar 

  • Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T. & Ingram, L.O. 1991 Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Applied and Environmental Microbiology 57, 893-900.

    CAS  Google Scholar 

  • Pessoa Jr., A., Mancilha, I.M. & Sato, S. 1997 Acid hydrolysis of hemicellulose from sugarcane bagasse. Brazilian Journal of Chemical Engineering 14, 291-297.

    Article  CAS  Google Scholar 

  • Ranatunga, T.D., Jervis, J., Helm, R.F., McMillan, J.D. & Wooley, R.J. 2000 The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme and Microbial Technology 27, 240-247.

    Article  CAS  Google Scholar 

  • Takahashi, C.M., Takahashi, D.F., Carvalhal, M.L. & Alterthum, F. 1999 Effects of acetate on the growth and fermentation performance of Escherichia coli KO11. Applied Biochemistry and Biotechnology 81, 193-203.

    Article  CAS  Google Scholar 

  • Takahashi, D.F. 1997 Produção de etanol a partir de hidrolisado de bagaço de cana-de-açcar empregando Escherichia coli recombinante. Ph.D thesis, USP, São Paulo, Brasil.

    Google Scholar 

  • Takahashi, D.F., Carvalhal, M.L. & Alterthum, F. 1994 Ethanol production from pentoses and hexoses by recombinant Escherichia coli. Biotechnology Letters 16, 747-750.

    Article  CAS  Google Scholar 

  • Von Sivers, M., Zacchi, G., Olsson, L. & Hahn-Hägerdal, B. 1994 Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnology Progress 10, 555-560.

    Article  CAS  Google Scholar 

  • Wheals, A.E., Basso, L.C., Alves, D.M.G. & Amorin, H.V. 1999 Fuel ethanol after 25 years. Trends in Biotechnology 17, 482-487.

    Article  CAS  Google Scholar 

  • Yomano, L.P., York, S.W. & Ingram, L.O. 1998 Isolation and characterization of ethanol± tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology & Biotechnology 20, 132-138.

    Article  CAS  Google Scholar 

  • York, S.W. & Ingram, L.O. 1996a Soy-based medium for ethanol production by Escherichia coli KO11. Journal of Industrial Microbiology 16, 374-376.

    Article  CAS  Google Scholar 

  • York, S.W. & Ingram, L.O. 1996b Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement. Biotechnology Letters 18, 683-688.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, C.M., de Carvalho Lima, K.G., Takahashi, D.F. et al. Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World Journal of Microbiology and Biotechnology 16, 829–834 (2000). https://doi.org/10.1023/A:1008987103701

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008987103701

Navigation