Skip to main content
Log in

Bonding mechanism and stress distribution of a glass frit free thick film metallization for AlN-ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Typical thick film pastes applied for the metallization of AlN-ceramics are glass bonding systems. The glass phase responsible for adhesion onto the ceramic unfortunately also acts as a heat barrier and impairs the excellent thermal conductivity of AlN. A new glass frit free conductor paste has been especially developed for the metallization of AlN. A numerical analysis of the stress distribution within the metallized ceramic induced by a continuous as well as a pulsed mode operating heat source has been conducted for this new metallization paste and, for comparison purpose, also for a standard thick film paste by means of a finite element program. In order to determine the physical property data of the phases occurring at the interface between metallization and substrate required for numerical simulation the relevant intermetallic samples have been synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinshanker, Adv. Microelectron. 1 (1994) 37.

    Google Scholar 

  2. T. Yamaguchi and M. Kageyama, IEEE Trans. Compan. Hybrids Manuf. Technol. 12 (1989) 402.

    Google Scholar 

  3. A. H. Carim and R. E. Loehman, J. Mater. Sci. 5 (1990) 1520.

    Google Scholar 

  4. N. Durlu, U. Gruber, M. A. Pietzka, H. Schmidt and J. C. Schuster, Z. Met. kd. 88 (1997) 390.

    Google Scholar 

  5. G. Groboth, in “Thermophysikalische Eigenschaften von Ti3Cu2AlN” (Seibersdorf Report, OEFZS-A-4112, 1997).

  6. E. U. Gruber, in “Substratmaterialien für elektronische Bauteile” PhD thesis, University of Vienna (1997).

  7. G. N. DUL'NEV and Y. P. ZARICHNYAK,, Heat Transf. Sov.Res. 2 (1970) 89.

    Google Scholar 

  8. G. Sauthoff, in “Intermetallics” (Verlag Chemie GmbH, Weinheim, 1995) p. 14.

    Google Scholar 

  9. “Data Sheet DP 9473” (Du Pont Electronic Materials Division, Wilmington, 1981).

  10. S. Ruckmich, in “Herstellung einphasiger, hochwärmeleitender, transluszenter AlN-Keramiken bei Temperaturen ≤ 1700 °C” PhD thesis, University of Stuttgart (1993).

  11. C. J. Smithells, in “Metals Reference Book” (Butterworth & Co, London, 1967) p. 685 and 708.

    Google Scholar 

  12. D. H. R. Sarma, in “Microstructure development processes in ruthenium dioxide-glass thick film resistors” PhD thesis, Purdue University (1982) p. 10.

  13. M. Von Ardenne, in “Tabellen zur angewandten Physik, 2” (VEB Deutscher Verlag derWissenschaften, Berlin, 1964) p. 238.

    Google Scholar 

  14. H. D. Baehr and K. Stephan, in “Wärme-und Stoffübertragung” (Springer Verlag, 1994) p. 652.

  15. F. Benesovsky, in “Ullmanns Encyklopädie der technischen Chemie, 17” (Verlag Chemie GmbH, Weinheim, 1979) p. 316.

    Google Scholar 

  16. A. J. Perry, Thin Solid Films 193/194 (1990) 469.

    Google Scholar 

  17. W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, G. Groboth, J. Alloys Compd. 217 (1995) 142.

    Google Scholar 

  18. R. C. Chu and R. E. Simons, in “Thermal Management Concepts in Microelectronic Packaging” (ISHM Technical Monograph, Silver Spring, Md., 1984) p. 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reicher, R., Smetana, W., Gruber, E.U. et al. Bonding mechanism and stress distribution of a glass frit free thick film metallization for AlN-ceramic. Journal of Materials Science: Materials in Electronics 9, 429–434 (1998). https://doi.org/10.1023/A:1008985505140

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008985505140

Keywords

Navigation