Skip to main content
Log in

Hydrophilic sponges based on 2-hydroxyethyl methacrylate Part VII: Modulation of sponge characteristics by changes in reactivity and hydrophilicity of crosslinking agents

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Despite previous unsuccessful attempts to use hydrated poly(2-hydroxyethyl methacrylate) sponges as implantable biomaterials, recently these materials became important as peripheral components in an artificial cornea of the core-and-skirt design. The low mechanical strength of sponges prompted this study on possible improvement of tensile properties by the use of a variety of crosslinking agents. Three vinylic (dimethacrylates) and two allylic compounds were used at different concentrations (0.1 to 2% (mol)) as crosslinking agents in the production of sponges. Their influence on the mechanical properties, porous morphology and swelling behavior of resulting sponges was evaluated. The onset of phase separation during polymerization was also measured by visible spectrophotometry. The results suggested an inherent heterogeneity of sponges, i.e. pores of non-uniform size and structural inhomogeneities. While the effects of changes in the nature and concentration of crosslinking agents on the equilibrium water content of sponges were ambiguous, some of the mechanical properties, such as toughness and elasticity, were improved by crosslinking with allylic agents. Scanning electron microscopic examination suggested that the mechanical effect is related to the variation of size of the polymer particles constituting the sponge structure, which was proved to be dependent upon the onset of phase separation during polymerization. ©2000 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. PEDLEY, P. J. SKELLY and B. J. TIGHE, Br. Polym. J. 12 (1980) 99.

    Google Scholar 

  2. H. SINGH, P. VASUDEVAN and A. R. RAY, J. Sci. Ind. Res. 39 (1980) 162.

    Google Scholar 

  3. M. F. REFOJO, in “Biocompatibility in clinical practice”, edited by D. F. Williams (CRC Press, Boca Raton, 1982), vol. II pp. 3–18.

    Google Scholar 

  4. N. A. PEPPAS (ed.), “Hydrogels in Medicine and Pharmacy”, (CRC Press, Boca Raton, 1987), vol. II.

    Google Scholar 

  5. O. WICHTERLE and D. LIM, Nature 185 (1960) 117.

    Google Scholar 

  6. M. BARVIC, K. KLIMENT and M. ZAVADIL, J. Biomed. Mater. Res. 1 (1967) 313.

    Google Scholar 

  7. E. CERNY, A. CHROMECEK, A. OPLETAL, F. PAPOUSEK and J. OTOUPALOVA, Scripta Med. 43 (1970) 63.

    Google Scholar 

  8. J. SMAHEL, J. MOSEROVA and E. BEHOUNKOVA, Acta Chir. Plast. 13 (1971) 193.

    Google Scholar 

  9. I. MICHNEVIC and K. KLIMENT, J. Biomed. Mater. Res. 5 (1971) 17.

    Google Scholar 

  10. J. S. CALNAN, Proc. Roy. Soc. Med. 63 (1970) 1115.

    Google Scholar 

  11. J. S. CALNAN, J. J. PFLUG, A. S. CHHABRA and N. RAGHUPATI, Br. J. Plast. Surg. 24 (1971) 113.

    Google Scholar 

  12. L. SPRINCL, J. KOPECKE and D. LIM, J. Biomed. Mater. Res. 5 (1971) 447.

    Google Scholar 

  13. Idem., Calcif. Tissue Res. 13 (1973) 63.

    Google Scholar 

  14. G. D. WINTER and B. J. SIMPSON, Nature 223 (1969) 88.

    Google Scholar 

  15. G. D. WINTER, Proc. Roy. Soc. Med. 63 (1970) 1111.

    Google Scholar 

  16. Idem., Proc. Roy. Soc. Med. 64 (1971) 645.

    Google Scholar 

  17. R. M. RUBIN and J. L. MARSHALL, J. Biomed. Mater. Res. 9 (1975) 375.

    Google Scholar 

  18. L. SPRINCL and M. NOVAK, J. Biomed. Mater. Res. 15 (1981) 437.

    Google Scholar 

  19. M. KON and A. DE VISSER, Plast. Reconstr. Surg. 67 (1981) 289.

    Google Scholar 

  20. S. H. RONEL, M. J. D'ANDREA, H. HASHIGUCHI, G. F. KLOMP and W. H. DOBELLE, J. Biomed. Mater. Res. 17 (1983) 855.

    Google Scholar 

  21. G. F. KLOMP, H. HASHIGUCHI, P. C. URSELL, Y. TAKEDA, T. TAGUCHI and W. H. DOBELLE, J. Biomed. Mater. Res. 17 (1983) 865.

    Google Scholar 

  22. K. KLIMENT, M. STOL, K. FAHOUN and B. STOCKAR, J. Biomed. Mater. Res. 2 (1968) 237.

    Google Scholar 

  23. B. J. SIMPSON, Biomed. Eng. 4 (1969) 65.

    Google Scholar 

  24. Z. VOLDRICH, Z. TOMANEK, J. VACIK and J. KOPECEK, J. Biomed. Mater. Res. 9 (1975) 675.

    Google Scholar 

  25. T. V. CHIRILA, I. J. CONSTABLE, G. J. CRAWFORD and A. V. RUSSO, U. S. Patent 5, 458, 819 (1995).

  26. T. V. CHIRILA, S. VIJAYASEKARAN, R. HORNE, Y. C. CHEN, P. D. DALTON, I. J. CONSTABLE and G. J. CRAWFORD, J. Biomed. Mater. Res. 28 (1994) 745.

    Google Scholar 

  27. T. V. CHIRILA, Trends Polym. Sci. 2 (1994) 296.

    Google Scholar 

  28. G. J. CRAWFORD, T. V. CHIRILA, S. VIJAYASEKARAN, P. D. DALTON and I. J. CONSTABLE, J. Refract. Surg. 12 (1995) 525.

    Google Scholar 

  29. T. V. CHIRILA, in “Polymeric materials encyclopedia”, edited by J. C. Salamone (CRC Press, Boca Raton, 1996), vol. 2 pp. 1525–1531.

    Google Scholar 

  30. C. R. HICKS, T. V. CHIRILA, P. D. DALTON, A. B. CLAYTON, S. VIJAYASEKARAN, G. J. CRAWFORD and I. J. CONSTABLE, Aust. New Zeal. J. Ophthalmol. 24 (1996) 297.

    Google Scholar 

  31. C. R. HICKS, T. V. CHIRILA, A. B. CLAYTON, J. H. FITTON, S. VIJAYASEKARAN, P. D. DALTON, X. LOU, S. PLATTEN, B. ZIEGELAAR, Y. HONG, G. J. CRAWFORD and I. J. CONSTABLE, Br. J. Ophthalmol. 82 (1998) 18.

    Google Scholar 

  32. T. V. CHIRILA, Trends Polym. Sci. 5 (1997) 346.

    Google Scholar 

  33. T. V. CHIRILA, I. J. CONSTABLE, G. J. CRAWFORD, S. VIJAYASEKARAN, D. E. THOMPSON, Y. C. CHEN, W. A. FLETCHER and B. J. GRIFFIN, Biomaterials 14 (1993) 26.

    Google Scholar 

  34. G. J. CRAWFORD, I. J. CONSTABLE, T. V. CHIRILA, S. VIJAYASEKARAN and D. E. THOMPSON, Cornea 12 (1993) 348.

    Google Scholar 

  35. T. V. CHIRILA, D. E. THOMPSON-WALLIS, G. J. CRAWFORD, I. J. CONSTABLE and S. VIJAYASEKARAN, Graefe's Arch. Clin. Exp. Ophthalmol. 234 (1996) 193.

    Google Scholar 

  36. S. VIJAYASEKARAN, C. R. HICKS, T. V. CHIRILA, J. H. FITTON, A. B. CLAYTON, X. LOU, S. PLATTEN, G. J. CRAWFORD and I. J. CONSTABLE, Cornea 16 (1997) 352.

    Google Scholar 

  37. T. V. CHIRILA, Y. C. CHEN, B. J. GRIFFIN and I. J. CONSTABLE, Polym. Int. 32 (1993) 221.

    Google Scholar 

  38. T. V. CHIRILA, D. Y. YU, Y. C. CHEN and G. J. CRAWFORD, J. Biomed Mater. Res. 29 (1995) 1029.

    Google Scholar 

  39. A. B. CLAYTON, T. V. CHIRILA and X. LOU, Polym. Int. 44 (1997) 201.

    Google Scholar 

  40. A. B. CLAYTON, T. V. CHIRILA and P. D. DALTON, Polym. Int. 42 (1997) 45.

    Google Scholar 

  41. A. B. CLAYTON, T. V. CHIRILA, P. D. DALTON and X. LOU, in “Transactions of the 5th World Biomaterials Congress, Toronto, May/June 1996” (Toronto University Press, Toronto, 1996) vol. I, p. 896.

    Google Scholar 

  42. Y. C. CHEN, T. V. CHIRILA and A. V. RUSSO, Mater. Forum 17 (1993) 57.

    Google Scholar 

  43. X. LOU, T. V. CHIRILA and A. B. CLAYTON, Int. J. Polym. Mater. 37 (1997) 1.

    Google Scholar 

  44. T. V. CHIRILA, B. HIGGINS and P. D. DALTON, Cellular Polym. 17 (1998) 141.

    Google Scholar 

  45. J. JANACEK and J. HASA, Coll. Czech. Chem. Commun. 31 (1966) 2186.

    Google Scholar 

  46. J. HASA and J. JANACEK, J. Polym. Sci. C 16 (1967) 317.

    Google Scholar 

  47. J. KOPECEK and D. LIM, J. Polym. Sci. A-1 9 (1971) 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, X., Dalton, P.D. & Chirila, T.V. Hydrophilic sponges based on 2-hydroxyethyl methacrylate Part VII: Modulation of sponge characteristics by changes in reactivity and hydrophilicity of crosslinking agents. Journal of Materials Science: Materials in Medicine 11, 319–325 (2000). https://doi.org/10.1023/A:1008977818135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008977818135

Keywords

Navigation