Skip to main content
Log in

Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Collagen-based scaffolds are extensively used in biomaterials and tissue engineering applications. These scaffolds have shown great biocompatibility and versatility, but their relatively low mechanical properties may limit use in orthopaedic load-bearing applications. Moreover, terminal sterilization with gamma irradiation, as is commonly performed with commercial devices, presents concerns over structural integrity and enzymatic stability. Therefore, the goal of this study was to test the hypothesis that EDC/NHS cross-linking (10 mM/5 mM) can protect collagen-hyaluronan sponges from the damaging effects of gamma irradiation. Specifically, we evaluated compressive and tensile mechanical properties, enzymatic stability, porosity and pore size, and swelling ratio. Ultimate tensile strength and elastic modulus exhibited increases (168.5 and 245.8%, respectively) following irradiation, and exhibited over tenfold increases (1049.2 and 1270.6%, respectively) following cross-linking. Irradiation affected pore size (38.4% decrease), but cross-linking prior to irradiation resulted in only a 17.8% decrease. Cross-linking also showed an offsetting effect on the equilibrium modulus, enzymatic stability, and swelling ratio of sponges. These results suggest that carbodiimide cross-linking of collagen-hyaluronan sponges can mitigate the structural damage typically experienced during gamma irradiation, warranting their use in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Merriam AR, Patel JM, Culp BM, Gatt Jr. CJ, Dunn MG. Successful total meniscus reconstruction using a novel fiber-reinforced scaffold: a 16 and 32-week study in an ovine model. Am J Sports Med. 2015;43:2528–37. https://doi.org/10.1177/0363546515595065.

    Article  Google Scholar 

  2. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55:1613–29.

    Article  CAS  Google Scholar 

  3. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89:338–44. https://doi.org/10.1002/bip.20871.

    Article  CAS  Google Scholar 

  4. Ghodbane SA, Dunn MG. Physical and mechanical properties of cross-linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons. J Biomed Mater Res A. 2016;104:2685–92. https://doi.org/10.1002/jbm.a.35813.

    Article  CAS  Google Scholar 

  5. Ma B, Wang X, Wu C, Chang J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater. 2014;1:81–9. https://doi.org/10.1093/rb/rbu009.

    Article  Google Scholar 

  6. Lin Y-C, Tan F-j, Marra KG, Jan S-S, Liu D-C. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater. 2009;5:2591–600. https://doi.org/10.1016/j.actbio.2009.03.038.

    Article  CAS  Google Scholar 

  7. Xu C, Lu W, Bian S, Liang J, Fan Y, Zhang X. Porous collagen scaffold reinforced with surfaced activated PLLA nanoparticles. Sci World J. 2012;2012:695137. https://doi.org/10.1100/2012/695137.

    Article  Google Scholar 

  8. Chan EC, Kuo S-M, Kong AM, Morrison WA, Dusting GJ, Mitchell GM, et al. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS ONE. 2016;11:e0149799. https://doi.org/10.1371/journal.pone.0149799.

    Article  Google Scholar 

  9. Ohyabu Y, Adegawa T, Yoshioka T, Ikoma T, Uemura T, Tanaka J. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite. Mater Sci Eng B. 2010;173:204–7. https://doi.org/10.1016/j.mseb.2009.12.008.

    Article  CAS  Google Scholar 

  10. Liang W-H, Kienitz BL, Penick KJ, Welter JF, Zawodzinski TA, Baskaran H. Concentrated collagen-chondroitin sulfate scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;94:1050–60. https://doi.org/10.1002/jbm.a.32774.

    Article  CAS  Google Scholar 

  11. Greene JJ, Sidle DM. The hyaluronic acid fillers: current understanding of the tissue device interface. Facial Plast Surg Clin North Am. 2015;23:423–32. https://doi.org/10.1016/j.fsc.2015.07.002.

    Article  Google Scholar 

  12. Collins MN, Birkinshaw C. Hyaluronic acid-based scaffolds for tissue engineering—a review. Carbohydr Polym. 2013;92:1262–79. https://doi.org/10.1016/j.carbpol.2012.10.028.

    Article  CAS  Google Scholar 

  13. Kreger ST, Voytik-Harbin SL. Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response. Matrix Biol. 2009;28:336–46. https://doi.org/10.1016/j.matbio.2009.05.001.

    Article  CAS  Google Scholar 

  14. Murray MM, Spindler KP, Abreu E, Muller JA, Nedder A, Kelly M, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25:81–91. https://doi.org/10.1002/jor.20282.

    Article  Google Scholar 

  15. Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, et al. Collagen type I hydrogel allows migration, proliferation and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A. 2010;94:442–9. https://doi.org/10.1002/jbm.a.32696.

    Article  CAS  Google Scholar 

  16. He X, Kawazoe N, Chen G. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone). Biomed Res Int. 2014;2014:106082. https://doi.org/10.1155/2014/106082.

    Article  Google Scholar 

  17. Matuska AM, McFetridge PS. The effect of terminal sterilization on structural and biophysical properties of a decellularized collagen-based scaffold; implications for stem cell adhesion. J Biomed Mater Res B Appl Biomater. 2015;103:397–406. https://doi.org/10.1002/jbm.b.33213.

    Article  Google Scholar 

  18. Noah EM, Chen J, Jiao X, Heschel I, Pallua N. Impact of sterilization on the porous design and cell behavior in collagen sponges prepared for tissue engineering. Biomaterials. 2002;23:2855–61.

    Article  CAS  Google Scholar 

  19. Davidenko N, Schuster CF, Bax DV, Raynal N, Farndale RW, Best SM, et al. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics. Acta Biomater. 2015;25:131–42. https://doi.org/10.1016/j.actbio.2015.07.034.

    Article  CAS  Google Scholar 

  20. Faraj KA, Brouwer KM, Geutjes PJ, Versteeg EM, Wismans RG, Deprest JA, et al. The effect of ethylene oxide sterilisation, beta irradiation and gamma irradiation on collagen fibril-based scaffolds. Tissue Eng Regen Med. 2011;8:460–70.

    Google Scholar 

  21. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al. Cytotoxic evaluation of biomechanically improved crosslinked ovine collagen on human dermal fibroblasts. Biomed Mater Eng. 2014;24:1715–24. https://doi.org/10.3233/BME-140983.

    Article  CAS  Google Scholar 

  22. Ruijgrok JM, de Wijn JR, Boon ME. Glutaraldehyde crosslinking of collagen: Effects of time, temperature, concentration and presoaking as measured by shrinkage temperature. Clin Mater. 1994;17:23–7. https://doi.org/10.1016/0267-6605(94)90044-2.

    Article  CAS  Google Scholar 

  23. McKegney M, Taggart I, Grant MH. The influence of crosslinking agents and diamines on the pore size, morphology and the biological stability of collagen sponges and their effect on cell penetration through the sponge matrix. J Mater Sci Mater Med. 2001;12:833–44.

    Article  CAS  Google Scholar 

  24. Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res. 2002;61:121–30. https://doi.org/10.1002/jbm.10145.

    Article  CAS  Google Scholar 

  25. Ahmad Z, Shepherd JH, Shepherd DV, Ghose S, Kew SJ, Cameron RE, et al. Effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide concentrations on the mechanical and biological characteristics of cross-linked collagen fibres for tendon repair. Regen Biomater. 2015;2:77–85. https://doi.org/10.1093/rb/rbv005.

    Article  CAS  Google Scholar 

  26. Seto A, Gatt Jr. CJ, Dunn MG. Radioprotection of tendon tissue via crosslinking and free radical scavenging. Clin Orthop Relat Res. 2008;466:1788–95. https://doi.org/10.1007/s11999-008-0301-9.

    Article  Google Scholar 

  27. Oloyede A, Broom ND. A physical model for the time-dependent deformation of articular cartilage. Connect Tissue Res. 1993;29:251–61.

    Article  CAS  Google Scholar 

  28. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 1980;102:73–84.

    Article  CAS  Google Scholar 

  29. Gibson LJ, Ashby MF. Cellular solids: structure and properties. The structure of cellular solids, Cambridge University Press, Cambridge, UK. 1999;43–7.

  30. O’Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25:1077–86.

    Article  Google Scholar 

  31. Patel JM, Merriam AR, Culp BM, Gatt Jr. CJ, Dunn MG. One-year outcomes of total meniscus reconstruction using a novel fiber-reinforced scaffold in an ovine model. Am J Sports Med. 2016;44:898–907. https://doi.org/10.1177/0363546515624913.

    Article  Google Scholar 

  32. Ran J, Hu Y, Le H, Chen Y, Zheng Z, Chen X, et al. Ectopic tissue engineered ligament with silk collagen scaffold for ACL regeneration: a preliminary study. Acta Biomater. 2017. https://doi.org/10.1016/j.actbio.2017.02.027.

  33. Tamaddon M, Burrows M, Ferreira SA, Dazzi F, Apperley JF, Bradshaw A, et al. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Sci Rep. 2017;7:43519. https://doi.org/10.1038/srep43519.

    Article  Google Scholar 

  34. Powell HM, Boyce ST. EDC cross-linking improves skin substitute strength and stability. Biomaterials. 2006;27:5821–7. https://doi.org/10.1016/j.biomaterials.2006.07.030.

    Article  CAS  Google Scholar 

  35. Mazor E, Zilberman M. Effect of gamma-irradiation sterilization on the physical and mechanical properties of a hybrid wound dressing. Polym Adv Technol. 2017;28:41–52. https://doi.org/10.1002/pat.3854.

    Article  CAS  Google Scholar 

  36. Deyne PD, Haut RC. Some effects of gamma irradiation on patellar tendon allografts. Connect Tissue Res. 1991;27:51–62. https://doi.org/10.3109/03008209109006994.

    Article  Google Scholar 

  37. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater. 2015;52:1–13. https://doi.org/10.1016/j.jmbbm.2014.07.008.

    Article  Google Scholar 

  38. Wang H-M, Chou Y-T, Wen Z-H, Wang Z-R, Chen C-H, Ho M-L. Novel biodegradable porous scaffold applied to skin regeneration. PLoS ONE. 2013;8:e56330. https://doi.org/10.1371/journal.pone.0056330.

    Article  Google Scholar 

  39. Perez-Puyana V, Romero A, Guerrero A. Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties. J Biomed Mater Res A. 2016;104:1462–8. https://doi.org/10.1002/jbm.a.35671.

    Article  CAS  Google Scholar 

  40. Tyan YC, Liao JD, Lin SP, Chen CC. The study of the sterilization effect of gamma ray irradiation of immobilized collagen polypropylene nonwoven fabric surfaces. J Biomed Mater Res A. 2003;67:1033–43. https://doi.org/10.1002/jbm.a.10024.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Orthopaedic Research Laboratory at Rutgers Biomedical and Health Sciences for their assistance in completing this study. They also thank Sukanya Murali for performing the SEM processing and imaging. This study was funded, in part, by the Department of Orthopaedic Surgery discretionary fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jay M. Patel or Michael G. Dunn.

Ethics declarations

Conflict of interest

J.M.P. serves as a consultant for NovoPedics, Inc. M.G.D serves as interim secretary and treasurer and owns stock inNovoPedics Inc. The remaining authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J.M., Jackson, R.C., Schneider, G.L. et al. Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges. J Mater Sci: Mater Med 29, 75 (2018). https://doi.org/10.1007/s10856-018-6056-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6056-2

Navigation