Skip to main content
Log in

Conservation of the elastic and flexural moduli of osteopenic femoral cortical bone in experimental inflammatory arthritis in the rabbit*

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Experimental inflammatory arthritis (EIA) produced by carrageenan injection provokes a rapid bone remodeling state with cortical and cancellous bone loss. The objective of this study was to determine whether changes in cortical mechanical properties and/or geometry occur in long bones, either near or remote to the site of inflammation. EIA was induced in the right tibio-femoral joint of rabbits over 56 days. The right humerus and right femur from 15 normal and 25 arthritis group animals were excized. Semi-cylindrical specimens of the medial cortical shaft were subjected to non-destructive four-point bending tests. Transverse sections at the four contact sites of the loading jig were photographed and digitized to obtain average cross-sectional area (A) and moment of inertia (I). Moment of inertia and slope of the load/deflection curve permitted calculation of modulus of elasticity (E) for each specimen. Load/time curves were also used to calculate per cent stress remaining in relaxation experiments. Per cent stress remaining, E, A, I and \(.......CONVERSION........\)\sqrt {{\text{I/A}}} (radius of gyration) were examined for differences by bone (humerus, femur) and by treatment (N,A) using two way ANOVA. The induction of inflammatory arthritis did not significantly alter the modulus of elasticity in either the femur or humerus; however, arthritis reduced the moment of inertia from \({\text{34}}{\text{.54}} \pm {\text{2}}{\text{.88}} \times {\text{10}}^{ - {\text{12}}} {\text{m}}^{\text{4}} {\text{ to 25}}{\text{.06}} \pm {\text{1}}{\text{.80}}^{ - 12} {\text{m}}^{\text{4}} ({\text{mean}} \pm {\text{SEM,}}p < 0.05)\). This was observed in the femur (near the arthritic joint), but not in the humerus (remote from arthritic joint). Analysis of area and ratio I/A demonstrated that this geometric effect of treatment was due to reduced area without gross cross-sectional shape changes. Per cent stress remaining in the femur (but not in the humerus) was higher in the arthritis specimens than in the normal specimens \(\left( {{\text{N:}}\;{\text{80}}{\text{.86}} \pm {\text{0}}{\text{.97}}\% ;\;{\text{A:}}\;{\text{83}}{\text{.25}} \pm {\text{0}}{\text{.71}}\% ,\;{\text{p}} < 0.05} \right)\). Thus, in this arthritis model, the principal mechanical or geometric effect on cortical bone was reduction of the cross-sectional area and moment of inertia. The viscoelastic relaxation response of bone was also altered, perhaps due to loss of water or collagen degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bogoch, D. Hastings, N. Gschwend and A. Gross, Clin. Orthop. 229 (1988) 223.

    Google Scholar 

  2. J. R. Hooyman, L. J. Melton iii, A. M. Nelson, W. M. O'Fallon and B. L. Riggs, Arthritis Rheum. 27 (1984) 1353.

    Google Scholar 

  3. T. K. Spector, G. M. Hall, E. V. Mccloskey and J. A. Kanis BMJ 306 (1993) 558.

    Google Scholar 

  4. H. Duncan, H. M. Frost, A. R. Villaneuva and J. W. Sigler, Arthritis Rheum. 8 (1965) 943.

    Google Scholar 

  5. S. Shimizu, S. Shiozawa, K. Shiozawa, S. Imura and T. Fujita, ibid. 28 (1985) 25.

    Google Scholar 

  6. E. Bogoch, N. Gschwend, B. Bogoch, B. Rahn and S. Perren, J. Orthop. Res. 6 (1988) 648.

    Google Scholar 

  7. P. N. Sambrook and J. Reeve, Clin. Sc. 74 (1988) 225.

    Google Scholar 

  8. E. Bogoch, N. Gschwend, B. Bogoch, B. Rahn and S. Perren, Arthritis Rheum. 32 (1989) 617.

    Google Scholar 

  9. M. W. Pysklywec, E. R. Bogoch, E. L. Moran and V. L. Fornasier, J. Orthop. Rheumatol. 9 (1996) 150.

    Google Scholar 

  10. E. Hajcsar, E. Roberts, E. Moran, M. Grynpas and E. Bogoch, J. Bone Joint Surg. (Br) (1998) 80B (Suppl 1) 2.

    Google Scholar 

  11. C. Bellingham, J. M. Lee, E. Moran and E. Bogoch, J. Orthop. Res. 13 (1995) 876.

    Google Scholar 

  12. J. M. Gere and S. P. Timoshenko, in “Mechanics of materials” (PWS Publishing Company, Boston, 1990) p. 737.

    Google Scholar 

  13. A. Higdon, E. H. Ohlsen, W. B. Stiles, J. A. Weese and W. F. Riley (eds.), in “Mechanics of materials, SI Version, 3rd edn” (John Wiley & Sons, New York, 1978) p. 239.

    Google Scholar 

  14. M. Pysklywec, E. Moran and E. Bogoch, J. Orthop. Res. 15 (1997) 858.

    Google Scholar 

  15. A. H. Burstein, J. M. Zika, K. G. Heiple and L. Klein, J. Bone Joint Surg. 57 (1975) 956.

    Google Scholar 

  16. A. H. Burstein, D. T. Reilly and M. Martens, ibid. 58 (1976) 82.

    Google Scholar 

  17. R. Lopez-Escalera and A. Pardo, Collagen Rel. Res. 7 (1987) 249.

    Google Scholar 

  18. D. A. Lowther and G. C. Gillard, Arthritis Rheum. 19 (1976) 769.

    Google Scholar 

  19. J. D. Currey, J. Biomech. 2 (1969) 1.

    Google Scholar 

  20. D. R. Carter and W. C. Hayes, Science 194 (1976) 1174.

    Google Scholar 

  21. Idem., J. Bone Joint Surg. 59 (1977) 954.

    Google Scholar 

  22. J. D. Currey, Philos. Trans. R. Soc. Lond. B. Biol. Sci. 304 (1984) 509.

    Google Scholar 

  23. S. Lucas, E. R. Bogoch, R. Nespeca and M. D. Grynpas, Eur. J. Exp. Musculoskel. Res. 1 (1992) 121.

    Google Scholar 

  24. J. D. Currey, J. Orthop. Res. 6 (1988) 32.

    Google Scholar 

  25. Idem., J. Biomech. 21 (1988) 131.

    Google Scholar 

  26. J. L. Ferretti, R. F. Capozza, N. Mondelo and J. R. Zanchetta, J. Bone Miner. Res. 8 (1993) 1389.

    Google Scholar 

  27. C. Turner, Bone 12 (1991) 203.

    Google Scholar 

  28. H. Yamada, in “Strength of biological materials”, edited by F. Evans (Williams and Williams, Baltimore, 1970) p. 55–69.

    Google Scholar 

  29. M. M. Panjabi, A. A. I. White and W. O. Southwick, J. Bone Joint Surg. 55 (1973) 322.

    Google Scholar 

  30. E. R. Bogoch, E. Moran, S. Crowe and V. Fornasier, J. Orthop. Res. 13 (1995) 777.

    Google Scholar 

  31. R. B. Ashman, in “Bone mechanics”, edited by S. C. Cowin (CRC Press Inc., Boca Raton, FL, 1989) p. 81.

    Google Scholar 

  32. D. T. Reilly and A. H. Burstein, J. Bone Joint Surg. 56 (1974) 1001.

    Google Scholar 

  33. C. Turner, J. Orthop. Res. 11 (1993) 462.

    Google Scholar 

  34. T. Terjesen and P. Benum, Acta Orthop. Scand. 54 (1983) 256.

    Google Scholar 

  35. K. Shono, J. Kyoto Pref. Med. Univ. 68 (1960) 1275.

    Google Scholar 

  36. W. Bonfield and E. A. Clark, J. Mater. Sci. 8 (1973) 1590.

    Google Scholar 

  37. S. L. Woo, S. C. Kuei, D. Amiel, M. A. Gomez, W. C. Hayes and W. H. Akeson, J. Bone Joint Surg. 63 (1981) 780.

    Google Scholar 

  38. A. M. Parfitt, Am. J. Med. 82 (1987) 68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, E., Lee, J.M. & Bogoch, E.R. Conservation of the elastic and flexural moduli of osteopenic femoral cortical bone in experimental inflammatory arthritis in the rabbit*. Journal of Materials Science: Materials in Medicine 11, 561–568 (2000). https://doi.org/10.1023/A:1008976118934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008976118934

Keywords

Navigation