Skip to main content
Log in

Bridging defects in nerve continuity: influence of variations in synthetic fiber composition

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Synthetic filaments introduced into a silicone tube may help to enhance axonal growth over extended defects in nerve continuity [1]. Here we test the influence of number (0, 3, 7 or 15), size (diameter 150 or 250 μm) and material of filaments (polyamide or catgut) enclosed in such tubes (inner diameter 1.98 mm) on axonal growth across a 10 mm defect in rat sciatic nerve. The morphology of the tube content was analyzed four weeks post-surgery. The area of the formed tissue matrix inside the tube showed no difference between the groups. Myelinated axons were observed in the formed tissue matrix inbetween and peripheral to the filaments, however, separated from the filaments by concentric cell layers. The number of myelinated axons was less in the tubes with 15 filaments, most pronounced when catgut filaments were used. In most cases, except in tubes with 15 catgut filaments, fibers had grown into the distal nerve segment (pinch reflex test/light microscopy). We conclude that an intrinsic framework consisting of a limited number of synthetic filaments inside an extrinsic framework (silicone tube) does not disturb nerve regeneration. The formed tissue matrix was neither influenced by the presence or the numbers (if less than or equal to seven filaments), type of filaments nor the size of the filaments indicating the importance of the inserted nerve segments. © 1999 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lundborg, L. B. Dahlin, M. Kanje, N. Terada and D. Dohi, I. Hand Surg. 22B (1997) 299.

    Google Scholar 

  2. V. R. Hentz, in “Operative nerve repair and reconstruction”, vol. 1, edited by R. H. Gelberman (J.B. Lippincott Company, Philadelphia, 1991), pp. 1369.

    Google Scholar 

  3. H. Millesi, G. Meissl and A. Berger, J. Bone Joint Surg. 54A (1972) 727.

    Google Scholar 

  4. H. Millesi, Clin. Plast. Surg. 11 (1984) 105.

    PubMed  Google Scholar 

  5. L. Dahlin, K. F. Eriksson and G. D. Sundkvist, Diabetic Med. 14 (1997) 353.

    PubMed  Google Scholar 

  6. L. B. Dahlin, Q. Zhao and L. M. Bjursten, Restor. Neurol. Neurosci. 8 (1995) 199.

    Google Scholar 

  7. N. Danielsen, Restor. Neurol. Neurosci. 1 (1990) 253.

    Google Scholar 

  8. G. Lundborg, L. Dahlin, N. Danielsen, H. Hansson, A. Johannesson, F. M. Longo and S. Varon, J. Hand Surg. 7A (1982) 580.

    Google Scholar 

  9. Q. Zhao, L. B. Dahlin, M. Kanje and G. Lundborg, Restor. Neurol. Neurosci. 5 (1993) 197.

    Google Scholar 

  10. G. Lundborg and M. Kanje, Scand. J. Plast. Reconstr. Hand Surg. 30 (1996) 105.

    Google Scholar 

  11. N. Terada, L. M. Bjursten, D. Dohi and G. Lundborg, Scand. J. Plast. Reconstr. Hand Surg. 31 (1997) 1.

    Google Scholar 

  12. N. Terada, L. M. Bjursten, M. Papaloizos and G. Lundborg, Rest. Neurol. Neurosci. 11 (1997) 65.

    Google Scholar 

  13. M. Kanje, G. Lundborg and A. EdstrÖm, Brain Res. 439 (1988) 116.

    PubMed  Google Scholar 

  14. J. M. Kerns, N. Danielsen, B. Holmquist, M. Kanje and G. Lundborg, Exp. Neurol. 122 (1993) 28.

    PubMed  Google Scholar 

  15. Q. Zhao, L. B. Dahlin, M. Kanje and G. Lundborg, Brain Res. 592 (1992) 106.

    PubMed  Google Scholar 

  16. L. Zeng, A. Worseg, G Albrecht, W. Ohlinger, H. Redl, W. Grisbold, K Zatloukal and G. Schlag, Rest. Neurol. Neurosci. 8 (1995) 107.

    Google Scholar 

  17. L. B. Dahlin, A. Miyauchi, P. Thomsen, N. Danielsen and M. Kanje, Rest. Neurol. Neurosci. 9 (1996) 141.

    Google Scholar 

  18. A. Miyauchi, M. Kanje, N. Danielsen and L. B. Dahlin, Scand. J. Plast. Reconstr. Surg. Hand Surg. 31 (1997) 17.

    PubMed  Google Scholar 

  19. A. Rosengren, Medical thesis, Lund University (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahlin, L.B., Lundborg, G. Bridging defects in nerve continuity: influence of variations in synthetic fiber composition. Journal of Materials Science: Materials in Medicine 10, 549–553 (1999). https://doi.org/10.1023/A:1008968331167

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008968331167

Keywords

Navigation