Skip to main content
Log in

Exopolysaccharide of the gellan family: prospects and potential

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The use of microbial polysaccharides in the food, pharmaceutical and chemical industries has increased steadily during the past decade. The biopolymer gellan is a more recent addition to the family of microbial polysaccharides that is gaining much importance due to its novel property of forming thermo-reversible gels when heated and cooled. It is produced and marketed by some companies of Europe, USA, etc under trade names such as ‘Gelrite’, ‘Phytagel’ and ‘Kelcogel’. It has applications in diverse fields in the food, pharmaceutical and many other industries. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available published information on the gellan exopolysaccharide synthesized by Pseudomonas species. In particular information on its structure, physico-chemical properties and the rheology of its solutions etc. is critically assessed. Emphasis has also been paid to characterization of gellan. A brief historical background of the polymer and the biochemical and physiological characteristics of several different existing bacterial isolates which secrete gellan and related polysaccharides are discussed. An attempt has also been made to review the potential and future prospects, highlighting some novel techniques adopted to overcome the mass transfer problems associated with the fermentative production of gellan gum. The efficient downstream processes used for obtaining purified gellan are also highlighted. Attention has also been drawn to the problem associated with the fermentation processes due to the highly viscous nature of gellan gum and effect of different impeller systems on gellan fermentation kinetics and rheological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhaique, F., Coviello, M., Rambone, G., Carafa, M., Murtas, E., Riccieri, F.M., Dentini, M. & Desidesi, P. 1998 A gellan sclero glucan co-crosslinked hydrogel for controlled release. Proceeding International symposium. Controlled Release Bioacta Mater 25th, 886-867.

  • Anson, A., Fisher, P.J., Kennedy, A.F.D. & Sutherland, I.W.M. 1987 A bacterium yielding a polysaccharide with unusual properties. Journal of Applied Bacteriology 62, 147-150.

    Google Scholar 

  • Baird, J.K., Sandford, P.A. & Cottrel, I.W. 1983 Industrial application of some new microbial polysaccharides. Biotechnology 1, 778-783.

    Google Scholar 

  • Cairns, P., Miles, M.J. & Morris, V.J. 1991 X-ray diffraction studies of member of the gellan family of polysaccharide. Carbohydrate Polymers 14, 367-372.

    Google Scholar 

  • Campana, S., Andrade, C., Milas, M. & Rinaudo, M. 1990 Polyelectrolyte and rheological studies on the polysaccharide welan. International Journal of Biological Macromolecules 12, 379-383.

    Google Scholar 

  • Campana, S., Ganter, J., Milas, M. & Rinaudo, M. 1992 On the solution properties of bacterial polysaccharide of gellan family. Carbohydrate Research 231, 31-38.

    Google Scholar 

  • Carlfors, J., Edsman, K., Peterson, R. & Jornving, K. 1998 Rheological evaluation of gelrite in situ for opthalmic use. European Journal of Pharmaceutical Science 6(2) 113-119.

    Google Scholar 

  • Carroll, V., Chilvers, G.R., Franklin, D., Miles, M.J., Morris, V.J. & Ring, S.G. 1983 Rheology and microstructure of solution of the microbial polysaccharide from Pseudomonas elodea. Carbohydrate Research 114, 181-191.

    Google Scholar 

  • Casadevall, A., Freundlich, L.F. & Pirofski, I. 1992 Septic shocks caused by Pseudomonas paucimobilis. Clinical Infectious Diseases 14, 784.

    Google Scholar 

  • Chandersekaran, R., Puigjaner, L.C., Joyce, K.L. & Arnott, S. 1988 Cation interaction in gellan: An X-ray study of potassium salt. Carbohydrate Research 181, 23-40.

    Google Scholar 

  • Chandrasekran, R. & Thailambal, V.G. 1990 The influence of calcium ions, acetate and L-glycerate group on the gellan double helix. Carbohydrate Polymers 12, 431-442.

    Google Scholar 

  • Cotrell, I.W. 1983 Progress and development of new industrial bacterial polysaccharide. Abstract paper of American Chemical Society 185 Meet, CARB 16.

  • Crescenzi, V., Dentini, M. & Dea, I.C.M. 1987 The influence of side chains on the dilute solution properties of three structurally related, bacterial anionic polysaccharide. Carbohydrate Research 160, 283-302.

    Google Scholar 

  • Crescenzi, V. 1995 Microbial polysaccharide of applied interest: ongoing research activities in Europe. Biotechnology Progress 11, 251-259.

    Google Scholar 

  • Decker, C.F., Hawkins, R.E. & Simon, G.L. 1992 Infections with Pseudomonas paucimobilis. Clinical Infectious Diseases 14, 783-784.

    Google Scholar 

  • Dlamini, A.M. & Peiris, P.S. 1997 Production of exopolysaccharide by Pseudomonas sp. ATCC 31461 (P. elodea) using whey as fermentation substrate. Applied Microbiology & Biotechnology 47, 52-57.

    Google Scholar 

  • Dreveton, E., Monot, F., Ballerni, D., Lecourtier, J. & Choplin, L. 1994 Effect of mixing and mass transfer conditions on gellan production by P. elodea. Journal of Fermentation and Bioengineering 77, 642-649.

    Google Scholar 

  • Fattah, E.A., Grant, D.J., Gabr, K.E. & Meshali, M.M. 1998 Physical characterstic and release behaviour of salbutamol sulphate beads prepared with different ionic polysaccharide. Drug Development and Industrial Pharmacy 24, 541-547.

    Google Scholar 

  • Flatt, J.H., Cooper, T.A., Gonzalez, J.M., Dogger, D.E., Lightfoot, E.N. & Cameron, D.C. 1992 An anionic galactomannan polysaccharide gum from newly isolated bacterium II. Fermentation kinetics and lactose transport. Biotechnology Progress 8, 335-339.

    Google Scholar 

  • Gunning, A.P. & Morris, V.J. 1990 Light scattering studies of hyl ammonium gellan. International Journal of Biological Macromolecules 12, 338-341.

    Google Scholar 

  • Hansen, P.M.T. 1993 Food hydrocolloids in the diary industry. In Food Hydrocolloids Structure, Properties and Function, eds. Nishinari, K. & Doi, E. pp. 211-224. New York: Plenum. ISBN 0-306-44594-8.

    Google Scholar 

  • Holmes, B., Owen, R.J., Evans, A., Malnick, H. & Willcox, W.R. 1977 Pseudomonas paucimobilis, a new species isolated from human clinical specimen, the hospital environment and from other sources. International Journal of Systematic Bacteriology 27, 133-146.

    Google Scholar 

  • Jana, A.K. & Ghosh, P. 1997 Stimulation of xanthan production by Xanthomonas compestris. World Journal of Microbiology and Biotechnology 13, 261-264.

    Google Scholar 

  • Jansson, P.E., Lindberg, B. & Sandford, P.A. 1983 Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydrate Research 124, 135-139.

    Google Scholar 

  • Jansson, P.E., Kumar, N.S. & Linberg, B. 1986 Structural studies of polysaccharide (S-88) elaborated by Pseudomanas ATCC 31554. Carbohydrate Research 156, 165-172.

    Google Scholar 

  • Joao, A., Richau, D.C., Arsenio, M.F., Leonillde, M.M. & Correia, I.Sa. 1997 The biosynthesis of the exopolysaccharide gellan results in the decrease of Sphingomonas paucimobilis tolerance to copper. Enzyme & Microbial Technology 20, 510-515.

    Google Scholar 

  • Kang, K., Veeder, G.T., Mirrasoul, P.J., Kaneko, T. & Cottrell, I.W. 1982 Agar like polysaccharide produced by a Peudomonas species: production and basic properties. Applied & Environmental Microbiology 43, 1086-1091.

    Google Scholar 

  • Katayama, Y., Nishikawa, S., Murayama, A., Yamasaki, M., Morohoshi, N. & Haraguchi, T. 1988 The metabolism of biphenyl structures in lignin by the soil bacterium (Pseudomonas paucimobilis SYK-6). FEBS Letters 233, 107-110.

    Google Scholar 

  • Kawahara, K., Seydel, U., Matsura, M., Danbara, H., Rietschel, E.T. & Zahringer, U. 1991 Chemical structure of glycolipid isolated from Sphingomonas paucimobilis. FEBS Letters 292, 107-110.

    Google Scholar 

  • Kennedy, L. & Sutherland, I.W. 1994 Gellan lyases-novel polysaccharide lyases. Microbiology 140, 3007-3013.

    Google Scholar 

  • Kuo, M.S., Mort, A.J. & Dell, A. 1986 Identification and location of L-glycerate, an unusual acyl substitution in gellan gum. Carbohydrate Research 156, 173-187.

    Google Scholar 

  • Kwon, B.D., Foss, P.A., Rha, C. 1987 Rheological characterization of high viscosity polysaccharide. Progress Biotechnology 3, 253-266.

    Google Scholar 

  • Lapasin, R. & Prici, S. 1995 Rheology of industrial polysaccharide: theory and application. Glasgow: Blackie Academic & Professional. ISBN 0-7514-0211-7.

    Google Scholar 

  • Linn, C.C. & Casida, L.E. 1984 Gelrite as gelling agent in media for growth of thermophilic microorganism. Applied & Environmental Microbiology 47, 427-429.

    Google Scholar 

  • Ligio, O.M. & Correia, I.Sa. 1991 Gellan gum biosynthetic enzyme in producing and non-producing variants of Pseudomonas elodea. Biotechnology & Applied Biochemistry 14, 357-364.

    Google Scholar 

  • Ligio, O.M., Arsenio, M.F., Paula, L.R. & Correia, I.Sa. 1996 Gellan gum production and activity of biosynthetic enzyme in Sphonogomonas paucimobilis mucoid and non-mucoid variant. Biotechnology & Applied Biochemistry 24, 47-54.

    Google Scholar 

  • Lobas, D., Schumpe, S. & Deckwer, D.W. 1992 The production of gellan exopolysaccharide with Sphingomonas paucimobilis E2 (DSM 6314). Applied Microbiology & Biotechnology 37, 411-415.

    Google Scholar 

  • Manna, B., Gambhir, A. & Ghosh, P. 1996 Production and rheological characterstics of the microbial polysaccharide gellan. Letters in Applied Microbiology 47, 141-145.

    Google Scholar 

  • Maruyama, K., Nagura, S., Yamamoto, K. & Homma, T. 1996 Methods for continuously precipitating a polysaccharide dissolved in aqueous solution. Patent 96-14335.

  • Meseguer, G., Buri, P., Plazonnet, B., Rozier, A. & Gurny, R. 1996 Gamma scintigraphic comparision of eye drops containing pilocarpine in healthy volunteers. Journal of Ocular Pharmacology and Therapeutics 12, 481-488.

    Google Scholar 

  • Milas, M., Shi, X. & Rinaudo, M. 1990 On physico chemical properties of gellan gum. Biopolymers 30, 451-464.

    Google Scholar 

  • Monot, F. & Quinn, F.X. 1997 Gellan gum production by growing Pseudomonas elodea. Patent 97-03382.

  • Moorhouse, R. 1987 Structure/property relationship of a family of microbial polysaccharide. In Industrial Polysaccharide. Genetic engineering, structure/property relations and application, ed. Yalpani, M. pp. 187-206. Amsterdam: Elsevier. ISBN 0-444-42906-9.

    Google Scholar 

  • Moorhouse, R., Calegrave, G.T., Sandford, P.A., Baird, J. & Kang, K.S. 1981 In Solution Properties of Polysaccharides, ed. Brant, D.A. ACS Washington: ACS Symposium Series, Vol. 150, p 111. ISBN 0-8412-0609-0.

  • Morris, V.J. 1990 Biotechnically produced carbohydrate with functional properties for use in food system. Food Biotechnology 4, 45-47.

    Google Scholar 

  • Morris, V.J. 1991 Bacterial polysaccharide for use in food and agriculture. Proc. Am. Chem. Soci. Symp. Biotechnology of Polymers, 135-146.

  • O'Neil, M.A., Darvill, A.G., Albersheim, P.S. & Chou, K.J. 1990 Structural analysis of an acidic polysaccharide secreted by xanthobacter species (ATCC 53272). Carbohydrate Research 206, 289-296.

    Google Scholar 

  • Pollock, T. 1993 Gellan related polysaccharide and the genus spingomonas. Journal of General Microbiology 139, 1939-1945.

    Google Scholar 

  • Peik, J.A., Stenberger, S.M. & Veeder, G.T. 1987 Heteropolysaccharide and its production and use. European patent application 209277 A1.

  • Quinn, F.X. & Monot, F. 1996 Extraction of exopolysaccharide from fermentation must. Patent 96-10147.

  • Racine, M., Dumont, J., Champagne, C.P. & Morin, A. 1991 Production and characterization of the polysaccharide from Propionibacterium acidi-propionici on whey based media. Journal of Applied Bacteriology 71, 233-238.

    Google Scholar 

  • Reina, J., Bassa, A., Lompart, I., Portela, D. & Borrell, N. 1991 Infections with Pseudomonas paucimobilis: reports of four cases and review. Review of Infectious Diseases 13, 1072-1076.

    Google Scholar 

  • Roller, S. & Dea, I.C.M. 1992 Biotechnology in production and modification of biopolymers for foods. Critical Review of Biotechnology 12, 261-277.

    Google Scholar 

  • Sanchez, A., Rami'rez, M.E., Torres, L.G., Galindo, E. & Mob, W.J. 1997 Characterisation of xathan from selected Xanthomonas strains cultivated under constant dissolved oxygen. World Journal of Microbiology and Biotechnology 13, 443-451.

    Google Scholar 

  • Stauffer, K.R. & Leeder, J.G. 1978 Extracellular microbial polysaccharide production by fermentation on whey or hydrolysed whey. Journal of Food Science 43, 1483-1485.

    Google Scholar 

  • Stankowski, J.D. & Zellar, S.G. 1992 Location of second O-acetyl group in welan by the reductive cleavage method. Carbohydrate Reasearch 224, 337-341.

    Google Scholar 

  • Sutherland, I.W. 1998 Novel and applied application of polysaccharide. Trends in Biotechnology 16, 41-46.

    Google Scholar 

  • Sutherland, I.W. 1990 Biotechnology of Microbial Exopolysaccharides. Cambridge: Cambridge University Press. ISBN 0-521-36350-0.

    Google Scholar 

  • Sutherland, I.W. 1994 Structure function relationship in microbial exopolysaccharide. Biotechnology Advances 12, 393-448.

    Google Scholar 

  • Sutherland, I.W. 1996 Microbial biopolymers from agriculture products: production and potential, International Biodeterioration & Biodegradation 38, 249-261.

    Google Scholar 

  • Taira, K., Hayase, H., Arimura, N., Yamashita, S., Miyazaki, T. & Furukawa, K. 1988 Cloning and nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene from the PCB-degrading strain of Pseudomonas paucimobilis Q1. Biochemistry 27, 3990-3996.

    Google Scholar 

  • Tatterson, G.B. 1991 Fluid mixing and gas dispersion in agitated tanks. New York: McGrew Hill Inc. ISBN 0-07-062933-1.

    Google Scholar 

  • Tebbe, C.C & Reber, H.H. 1988 Utilisation of the herbicide phosphinothricin as a nitrogen source by soil bacteria. Applied Microbiology and Biotechnology 29, 103-105.

    Google Scholar 

  • Vartek, N.B., Lin, C.C., Cleary, J.M., Fagan, M.J., & Sair Jr., M.H. 1995 Glucose metabolism in Sphingomonas elodea: pathway engineering via construction of glucose phosphate dehydrogenase insertion mutant. Microbiology 141, 2339-2350.

    Google Scholar 

  • Yabuchi, E., Yano, I., Oyaizu, H., Hasimoto, Y., Ezaki, T., & Yamanoto, H. 1990 Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov. Microbiology & Immunology 34, 99-119.

    Google Scholar 

  • Yamamoto, A., Yabuchi, E., Yano, I. & Mausi, M. 1978 Isolation of a novel sphingoglycolipid containing glucuronic acid and 2-hydroxy fatty acid from Flavobacterium devorans ATCC 10829. Journal of Biochemistry 83, 1213-1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banik, R., Kanari, B. & Upadhyay, S. Exopolysaccharide of the gellan family: prospects and potential. World Journal of Microbiology and Biotechnology 16, 407–414 (2000). https://doi.org/10.1023/A:1008951706621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008951706621

Navigation