Skip to main content
Log in

A Model Study of Cellular Short-Term Memory Produced by Slowly Inactivating Potassium Conductances

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks) conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes in firing frequency as a function of parameters of the model, injected current and prior history of the neuron (deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal population computation was used. Ks inactivation was found to control the rate of convergence to steady-state discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons. These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of neuronal populations under real physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amit D, Brunel N (1997) Dynamics of a recurrent network of spiking neurons before and following learning. Network: Comput. Neural Syst. 8:373-404.

    Google Scholar 

  • Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J. Neurophysiol. 68:945-960.

    Google Scholar 

  • Avoli M (1986) Inhibitory potentials in neurons of the deep layers of the in vitro neocortical slice. Brain Res. 370:165-170.

    Google Scholar 

  • Bargas J, Galarraga E (1995) Ion channels: Keys to neuronal specialization. In: M Arbib, ed. The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, pp. 496-501.

    Google Scholar 

  • Bargas J, Galarraga E, Aceves J (1989) An early outward conductance modulates the firing latency and frequency of neostriatal neurons of the rat brain. Exp. Brain Res. 75:146-156.

    Google Scholar 

  • Barkai E, Bergman R, Horwitz G, Hasselmo M (1994) Modulation of associative memory function in a biophysical simulation of rat piriform cortex. J. Neurophysiol. 72(2):659-677.

    Google Scholar 

  • Booth V, Rinzel J, Kiehn O (1997) Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J. Neurophysiol. 78(6):3371-3385.

    Google Scholar 

  • Buonomano D, Merzenich M (1995) Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267:1028-1030.

    Google Scholar 

  • Byrne J (1980) Quantitative aspects of ionic conductance mechanisms contributing to firing pattern of motor cells mediating inking behaviour in Aplysia Californica. J. Neurophysiol. 43:651-668.

    Google Scholar 

  • Byrne J, Shapiro E, Dieringer N, Koester J (1979) Biophysical mechanisms contributing to inking behavior in Aplysia. J. Neurophysiol. 42:1233-1250.

    Google Scholar 

  • Camperi M, Wang X-J (1998) A model of visuospatial working memory in prefrontal cortex: Recurrent network and cellular bistability. J. Comput. Neurosci. 5(4):383-405.

    Google Scholar 

  • Cartling B (1993) Control of the complexity of associative memory dynamics by neuronal adaptation. Int. J. Neural Syst. 4:129-141.

    Google Scholar 

  • Cartling B (1997) Control of computational dynamics of coupled integrate-and-fire neurons. Biol. Cybern. 76(5):383-395.

    Google Scholar 

  • Cheney P, Fetz E (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J. Neurophysiol. 44:773-791.

    Google Scholar 

  • Delord B, Klaassen A, Burnod Y, Costalat R, Guigon E (1997) Bistable behaviour in a neocortical neurone model. NeuroReport 8(4):1019-1023.

    Google Scholar 

  • Deuchars J, Thomson A (1995) Single axon fast inhibitory postsynaptic potentials elicited by a sparsely spiny interneuron in rat neocortex. Neuroscience 65:935-942.

    Google Scholar 

  • Foehring R, Surmeier D (1993) Voltage-gated potassium currents in acutely dissociated rat cortical neurons. J. Neurophysiol. 70:51-63.

    Google Scholar 

  • Fukai T (1995) A model cortical circuit for the storage of temporal sequences. Biol. Cybern. 72(4):321-328.

    Google Scholar 

  • Gabel L, Nisenbaum E (1998) Biophysical characterization and functional consequences of a slowly inactivating potassium current in neostriatal neurons. J. Neurophysiol. 79(4):1989-2002.

    Google Scholar 

  • Gawne T, Kjaer T, Hertz J, Richmond B (1996) Adjacent visual cortical complex cells share about 20% of their stimulus-related information. Cereb. Cortex 6(3):482-489.

    Google Scholar 

  • Georgopoulos A (1995) Current issues in directional motor control. Trends Neurosci. 18(11):506-510.

    Google Scholar 

  • Georgopoulos A, Crutcher M, Schwartz A (1989) Cognitive spatial-motor processes. 3. Motor cortical prediction of movement direction during an instructed delay period. Exp. Brain Res. 75:183-194.

    Google Scholar 

  • Getting P (1983) Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. J. Neurophysiol. 49:1036-1050.

    Google Scholar 

  • Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: Computational and experimental study. J. Neurophysiol. 78:1199-1211.

    Google Scholar 

  • Guigon E, Dorizzi B, Burnod Y, Schultz W (1995) Neural correlates of learning in the prefrontal cortex of the monkey: A predictive model. Cereb. Cortex 5:135-147.

    Google Scholar 

  • Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: Physiology and modelling. J. Physiol. (Lond.) 483(3):621-640.

    Google Scholar 

  • Hammond C, Crépel F (1992) Evidence for a slowly inactivating KC current in prefrontal cortical cells. Eur. J. Neurosci. 4:1087-1092.

    Google Scholar 

  • Hanes D, Schall J (1996) Neural control of voluntary movement initiation. Science 274:427-430.

    Google Scholar 

  • Hansel D, Sompolinsky H (1996) Chaos and synchrony in a model of a hypercolumn in visual cortex. J. Comput. Neurosci. 3:7-34.

    Google Scholar 

  • Harris-Warrick R, Marder E (1991) Modulation of neural networks for behavior. Ann. Rev. Neurosci. 14:39-57.

    Google Scholar 

  • Heller J, Hertz J, Kjaer T, Richmond B (1995) Information flow and temporal coding in primate pattern vision. J. Comput. Neurosci. 2(3):175-193.

    Google Scholar 

  • Hopfield J, Herz A (1995) Rapid local synchronization of action potentials: Toward computation with coupled integrate-and-fire neurons. Proc. Natl. Acad. Sci. USA 92(15):6655-6662.

    Google Scholar 

  • Howe J, Sutor B, Zieglgansberger W (1987) Baclofen reduces postsynaptic potentials of rat cortical neurons by an action other than its hyperpolarizing action. J. Physiol. (Lond.) 384:539-569.

    Google Scholar 

  • Huguenard J, McCormick D (1992) Simulation of the current involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68:1373-1383.

    Google Scholar 

  • Huguenard J, Prince D (1991) Slow inactivation of a TEA-sensitive K current in acutely isolated rat thalamic relay neurons. J. Neurophysiol. 66:1316-1328.

    Google Scholar 

  • Iooss G, Joseph D (1990) Elementary Stability and Bifurcation Theory (2nd ed.). Springer-Verlag, New York.

    Google Scholar 

  • Kiehn O (1991) Plateau potentials and active integration in the final common pathway for motor behavior. Trends Neurosci. 14:68-73.

    Google Scholar 

  • Komatsu Y, Nakajima S, Toyama K, Fetz E (1988) Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex. Brain Res. 442:359-362.

    Google Scholar 

  • Kuznetsov Y (1995) Elements of Applied Bifurcation Theory: Applied Mathematical Sciences, 112. Springer-Verlag, NewYork.

    Google Scholar 

  • Lanthorn T, Storm J, Andersen P (1984) Current-to-frequency transduction in CA1 hippocampal pyramidal cells: Slow prepotentials dominate the primary range firing. Exp. Brain Res. 53:431-443.

    Google Scholar 

  • Lashley K (1951) The problem of serial order in behavior. In: L Jeffres, ed. Cerebral Mechanisms of Behavior. Wiley, New York, pp. 112-136.

    Google Scholar 

  • LeMasson G, Marder E, Abbott L (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915-1918.

    Google Scholar 

  • Lisberger S, Sejnowski T (1992) Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature 360:159-161.

    Google Scholar 

  • Llinás R (1988) The Intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242:1654-1663.

    Google Scholar 

  • Lukashin A, Georgopoulos A (1994) A neural network for coding trajectories by time series of neuronal population vectors. Neural Comput. 6:19-28.

    Google Scholar 

  • Lüthi A, Gahwiler B, Gerber U (1996) A slowly inactivating potassium current in CA3 pyramidal cells of rat hippocampus in vitro. J. Neurosci. 16(2):586-594.

    Google Scholar 

  • Lytton W, Sejnowski T (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol. 66:1059-1079.

    Google Scholar 

  • Marder E, Abbott L, Turrigiano G, Liu Z, Golowasch J (1996) Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. USA 93(24):13481-13486.

    Google Scholar 

  • Marom S, Abbott L (1994) Modeling state-dependent inactivation of membrane currents. Biophys. J. 67:515-520.

    Google Scholar 

  • Marom S, Levitan I (1994) State-dependent inactivation of the Kv3 potassium channel. Biophys. J. 67:579-589.

    Google Scholar 

  • Mason A, Nicoll A, Stratford K (1991) Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J. Neurosci. 11:72-84.

    Google Scholar 

  • McCormick D (1991) Functional properties of a slowly inactivating potassium current in guinea pig dorsal lateral geniculate relay neurons. J. Neurophysiol. 66:1176-1189.

    Google Scholar 

  • Nicoll A, Blakemore C (1993) Single-fibre EPSPs in layer 5 of rat visual cortex in vitro. NeuroReport 4:167-170.

    Google Scholar 

  • Nisenbaum E, Xu Z, Wilson C (1994) Contribution of a slowly-inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. J. Neurophysiol. 71:1174-1189.

    Google Scholar 

  • Peters A (1987) Number of neurons and synapses in primary visual cortex. In: A Peters, E Jones, eds. Cerebral Cortex, Vol. 6: Further Aspects of Cortical Function, Including Hippocampus. Plenum Press, New York, pp. 267-294.

    Google Scholar 

  • Quintana J, Fuster J (1992) Mnemonic and predictive functions of cortical neurons in a memory task. NeuroReport 3:721-724.

    Google Scholar 

  • Rush M, Rinzel J (1995) The potassium A-current, low firing rates and rebound excitation in Hodgkin-Huxley models. Bull. Math. Biol. 57:899-929.

    Google Scholar 

  • Schwartz A (1993) Motor cortical activity during drawing movements: Population representation during sinusoidal tracing. J. Neurophysiol. 70:28-36.

    Google Scholar 

  • Shadlen M, Newsome W (1994) Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4(4):569-579.

    Google Scholar 

  • Silva L, Amitai Y, Connors B (1991) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251:432-435.

    Google Scholar 

  • Softky W, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13:334-350.

    Google Scholar 

  • Spain W, Schwindt P, Crill W (1991a) Post-inhibitory excitation and inhibition of layer V pyramidal neurones from cat sensorimotor cortex. J. Physiol. (Lond.) 434:609-626.

    Google Scholar 

  • Spain W, Schwindt P, Crill W (1991b) Two transient potassium currents in layer V pyramidal neurones from cat sensorimotor cortex. J. Physiol. (Lond.) 434:591-607.

    Google Scholar 

  • Stevens C, Zador A (1998) Input synchrony and the irregular firing of cortical neurons. Nat. Neurosci. 1(3):210-217.

    Google Scholar 

  • Storm J (1988) Temporal integration by a slowly inactivating KC current in hippocampal neurons. Nature 336:379-381.

    Google Scholar 

  • Surmeier D, Stefani A, Foehring R, Kitai S (1991) Developmental regulation of a slowly-inactivating potassium conductance in rat neostriatal neurons. Neurosci. Lett. 122:41-46.

    Google Scholar 

  • Thomson A, West D, Hahn J, Deuchars J (1996) Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J. Physiol. (Lond.) 496(1):81-102.

    Google Scholar 

  • Thorpe S, Imbert M (1989) Biological constraints on connectionist modelling. In: R Pfeifer, Z Schreter, F Fogelman-Soulié, L Steels, eds. Connectionism in Perspective. Elsevier Science, Amsterdam, pp. 63-92.

    Google Scholar 

  • Tsodyks M, Sejnowski T (1995) Rapid state switching in balanced cortical network model. Network: Comput. Neural Syst. 6:111-124.

    Google Scholar 

  • Tuckwell H (1988) Introduction to Theoretical Neurobiology, Vol 1: Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambridge.

    Google Scholar 

  • Turrigiano G, Marder E, Abbott L (1996) Cellular short-term memory from a slow potassium conductance. J. Neurophysiol. 75(2):963-966.

    Google Scholar 

  • Vaadia E, Kurata K, Wise S (1988) Neuronal activity preceding directional and nondirectional cues in the premotor cortex of rhesus monkeys. Somatosens. Mot. Res. 6:207-230.

    Google Scholar 

  • Wang H, McKinnon D (1995) Potassium currents in rat prevertebral and paravertebral sympathetic neurons: Control of firing properties. J. Physiol. (Lond.) 485:319-335.

    Google Scholar 

  • Wang X-J (1993) Ionic basis for intrinsic 40 Hz neuronal oscillations. NeuroReport 5:221-224.

    Google Scholar 

  • Wang X-J (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons (correction in 80(2):U9-U9). J. Neurophysiol. 79(3):1549-1566.

    Google Scholar 

  • Wilson C (1995) Dynamic modification of dendritic cable properties and synaptic transmission by voltage-gated potassium channels. J. Comput. Neurosci. 2:91-115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delord, B., Baraduc, P., Costalat, R. et al. A Model Study of Cellular Short-Term Memory Produced by Slowly Inactivating Potassium Conductances. J Comput Neurosci 8, 251–273 (2000). https://doi.org/10.1023/A:1008902110844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008902110844

Navigation