Skip to main content

Short-Term Synaptic Plasticity: Microscopic Modelling and (Some) Computational Implications

  • Chapter
  • First Online:
Computational Modelling of the Brain

Part of the book series: Advances in Experimental Medicine and Biology ((CNNCSN,volume 1359))

  • 1724 Accesses

Abstract

Synaptic transmission is transiently adjusted on a spike-by-spike basis, with the adjustments persisting from hundreds of milliseconds up to seconds. Such a short-term plasticity has been suggested to significantly augment the computational capabilities of neuronal networks by enhancing their dynamical repertoire. In this chapter, after reviewing the basic physiology of chemical synaptic transmission, we present a general framework—inspired by the quantal model—to build simple, yet quantitatively accurate models of repetitive synaptic transmission. We also discuss different methods to obtain estimates of the model’s parameters from experimental recordings. Next, we show that, indeed, new dynamical regimes appear in the presence of short-term synaptic plasticity. In particular, model neuronal networks exhibit the co-existence of a stable fixed point and a stable limit cycle in the presence of short-term synaptic facilitation. It has been suggested that this dynamical regime is especially relevant in working memory processes. We provide, then, a short summary of the synaptic theory of working memory and discuss some of its specific predictions in the context of experiments. We conclude the chapter with a short outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Least-squares fitting can be seen as a mapping from the average experimental responses to the parameters. In non-mathematical terms, the mapping is ill conditioned when small changes in the experimental responses result in large changes of the estimate. Practically, this means that the estimate obtained is not reliable. In fact, repeating the experiment would obviously produce slightly different responses that, in turn, would produce vastly different parameter estimates.

References

  • Abbott L, Regehr WG (2004) Synaptic computation. Nature 431:796–803

    Article  CAS  PubMed  Google Scholar 

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ (1989) Modeling brain function. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252

    Article  CAS  PubMed  Google Scholar 

  • Augustine GJ, Kasai H (2007) Bernard Katz, quantal transmitter release and the foundations of presynaptic physiology. J Physiol 578:623–625

    Article  CAS  PubMed  Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839

    Article  CAS  PubMed  Google Scholar 

  • Barak O, Tsodyks M (2007) Persistent activity in neural network with dynamic synapses. PLoS Comput Biol 3:e25

    Google Scholar 

  • Barak O, Tsodyks M (2014) Working models of working memory. Curr Opin Neurobiol 25:20–24

    Article  CAS  PubMed  Google Scholar 

  • Barak O, Tsodyks M, Romo R (2010) Neuronal population coding of parametric working memory. J Neurosci 30:9424–9430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri F, Brunel N (2008) Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex? Front Neurosci 2:3

    Article  Google Scholar 

  • Barbosa J, Stein H, Martinez RL, Galan-Gadea A, Li S, Dalmau J, Adam KC, Valls-Solé J, Constantinidis C, Compte A (2020) Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nat Neurosci 23:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barri A, Wang Y, Hansel D, Mongillo G (2016) Quantifying repetitive transmission at chemical synapses: a generative-model approach. eNeuro 3. https://doi.org/10.1523/ENEURO.0113-15.2016

  • Bertram R, Sherman A, Stanley EF (1996) Single-domain/bound Calcium hypothesis of transmitter release and facilitation. J Neurophysiol 75:1919–1931

    Article  CAS  PubMed  Google Scholar 

  • Bird AD, Wall MJ, Richardson MJ (2016) Bayesian inference of synaptic quantal parameters from correlated vesicle release. Front Comput Neurosci 10:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackman AV, Abrahamsson T, Costa RP, Lalanne T, Sjöström PJ (2013) Target-cell-specific short-term plasticity in local circuits. Front Synaptic Neurosci 5:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst JGG (2010) The low synaptic release probability in vivo. Trends Neurosci 33:259–266

    Article  CAS  PubMed  Google Scholar 

  • Branco T, Staras K (2009) The probability of neurotransmitter release: variability and feedback control at single synapses. Nat Rev Neurosci 10:373–383

    Article  CAS  PubMed  Google Scholar 

  • Brunel N (2000) Persistent activity and the single cell f-I curve in a cortical network model. Network 11:261–280

    Article  CAS  PubMed  Google Scholar 

  • Burnod Y, Korn H (1989) Consequences of stochastic release of neurotransmitters for network computation in the central nervous system. Proc Natl Acad Sci USA 86:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bykowska OS, Gontier C, Sax AL, Jia DW, Llera-Montero M, Bird AD, Houghton CJ, Pfister JP, Costa RP (2019) Model-based inference of synaptic transmission. Front Synapt Neurosci 11:21

    Article  CAS  Google Scholar 

  • Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10:910–923

    Article  CAS  PubMed  Google Scholar 

  • Cortes JM, Desroches M, Rodrigues S, Veltz R, Muñoz MA, Sejnowski TJ (2013) Short-term synaptic plasticity in the deterministic Tsodyks–Markram model leads to unpredictable network dynamics. Proc Natl Acad Sci USA 110:16610–16615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan N (2001) The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav Brain Sci 24:87–114

    Article  CAS  PubMed  Google Scholar 

  • De La Rocha J, Parga N (2005) Short-term synaptic depression causes a non-monotonic response to correlated stimuli. J Neurosci 25:8416–8431

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Castillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    Article  PubMed Central  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG (2000) Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20:1374–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobrunz LE, Stevens CF (1999) Response of hippocampal synapses to natural stimulation patterns. Neuron 22:157–166

    Article  CAS  PubMed  Google Scholar 

  • Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117:109–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortune ES, Rose GJ (2001) Short-term synaptic plasticity as a temporal filter. Trends Neurosci 24:381–385

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann G, Segev I, Markram H, Tsodyks M (2002) Coding of temporal information by activity-dependent synapses. J Neurophysiol 87:140–148

    Article  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287:273–278

    Article  CAS  PubMed  Google Scholar 

  • Hallermann S, Heckmann M, Kittel RJ (2010) Mechanisms of short-term plasticity at neuromuscular active zones of Drosophila. HFSP J 4:72–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansel D, Mato G (2013) Short-term plasticity explains irregular persistent activity in working memory tasks. J Neurosci 33:133–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hempel CM, Hartman KH, Wang XJ, Turrigiano GG, Nelson SB (2000) Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. J Neurophysiol 83:3031–3041

    Article  CAS  PubMed  Google Scholar 

  • Kandaswamy U, Deng PY, Stevens CF, Klyachko VA (2010) The role of presynaptic dynamics in processing of natural spike trains in hippocampal synapses. J Neurosci 30:15904–15914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick ZP (2018) Synaptic mechanisms of interference in working memory. Sci Rep 8:1–20

    Article  CAS  Google Scholar 

  • Kiyonaga A, Scimeca JM, Bliss DP, Whitney D (2017) Serial dependence across perception, attention, and memory. Trends Cogn Sci 21:493–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Markram H, Wang Y, Tsodyks M (1998) Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci USA 95:5323–5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveev V, Wang XJ (2000) Implications of all-or-none synaptic transmission and short-term depression beyond vesicle depletion: a computational study. J Neurosci 20:1575–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mongillo G, Barak O, Tsodyks M (2008) Synaptic theory of working memory. Science 319:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Mongillo G, Hansel D, van Vreeswijk C (2012) Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission. Phys Rev Lett 108:158101

    Article  PubMed  Google Scholar 

  • Mongillo G, Rumpel S, Loewenstein Y (2017) Intrinsic volatility of synaptic connections – a challenge to the synaptic trace theory of memory. Curr Opin Neurobiol 46:7–13

    Article  CAS  PubMed  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    Article  CAS  PubMed  Google Scholar 

  • Quastel D (1997) The binomial model in fluctuation analysis of quantal neurotransmitter release. Biophys J 72:728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainer G, Miller EK (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Eur J Neurosci 15:1244–1254

    Article  PubMed  Google Scholar 

  • Romani S, Amit DJ, Mongillo G (2006) Mean-field analysis of selective persistent activity in presence of short-term synaptic depression. J Comp Neurosci 20:201–217

    Article  Google Scholar 

  • Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR (2016) Reactivation of latent working memories with transcranial magnetic stimulation. Science 354:1136–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457:1015–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saviane C, Silver RA (2006) Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439:983–987

    Article  CAS  PubMed  Google Scholar 

  • Schmutz V, Gerstner W, Schwalger T (2020) Mesoscopic population equations for spiking neural networks with synaptic short-term plasticity. J Math Neurosci 10:1–32

    Article  Google Scholar 

  • Senn W, Wyler K, Streit J, Larkum M, Lüscher HR, Mey H, Müller L, Stainhauser D, Vogt K, Wannier T (1996) Dynamics of a random neural network with synaptic depression. Neural Netw 9:575–588

    Article  Google Scholar 

  • Shafi M, Zhou Y, Quintana J, Chow C, Fuster J, Bodner M (2007) Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience 146:1082–1108

    Article  CAS  PubMed  Google Scholar 

  • Silver RA (2003) Estimation of nonuniform quantal parameters with multiple-probability fluctuation analysis: theory, application and limitations. J Neurosci Meth 130:127–141

    Article  Google Scholar 

  • Stevens CF (2003) Neurotransmitter release at central synapses. Neuron 40:381–388

    Article  CAS  PubMed  Google Scholar 

  • Strogatz SH (2018) Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsodyks MV, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20:1–5

    Article  Google Scholar 

  • Wang Y, Markram H, Goodman PH, Berger TK, Ma J, Goldman-Rakic PS (2006) Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat Neurosci 9:534–542

    Article  CAS  PubMed  Google Scholar 

  • Wolff MJ, Jochim J, Akyürek EG, Stokes MG (2017) Dynamic hidden states underlying working-memory-guided behavior. Nat Neurosci 20:864–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Wong KY, Tsodyks M (2013) Neural information processing with dynamical synapses. Front Comput Neurosci 7:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Mongillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barri, A., Mongillo, G. (2022). Short-Term Synaptic Plasticity: Microscopic Modelling and (Some) Computational Implications. In: Giugliano, M., Negrello, M., Linaro, D. (eds) Computational Modelling of the Brain. Advances in Experimental Medicine and Biology(), vol 1359. Springer, Cham. https://doi.org/10.1007/978-3-030-89439-9_5

Download citation

Publish with us

Policies and ethics