Skip to main content
Log in

Bone remodelling in the pores and around load bearing transchondral isoelastic porous-coated glassy carbon implants: Experimental study in rabbits

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Cylinders of porous-coated glassy carbon were implanted into drill holes made through the articular surface of the medial condyle of both tibiae of ten rabbits for six and 12 weeks. Bone ingrowth and remodelling was examined by radiographic, histologic, oxytetracycline-fluorescence and microradiographic methods. Bone ingrowth into pores and load bearing implants was seen by all examination methods. Bone ingrowth occurred earlier when the pores were facing cancellous bone than cortical bone. Appositional bone formation occurred on the trabeculae a few millimetres from the interface during the early phase of remodelling at six weeks. At 12 weeks resorptive remodelling had occurred both in the surroundings and in those pores that face cancellous bone, whereas the amount of bone still increased in the pores facing cortical bone. In its porous-coated form glassy carbon functions well as a frame for ingrowing bone and it shows good osteoconductivity. Its mechanical properties are suitable for functioning as a structural bone substitute in places where the loads are mainly compressive. The difference between findings at six and 12 weeks indicated physiologic stress distribution and the adverse effects of stiff materials on bone remodelling were avoided by using this isoelastic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Younger and M. W. Chapman, J. Orthop. Trauma 3 (1989) 192.

    Google Scholar 

  2. E. D. Arrington, W. J. Smith, H. G. Chambers, A. L. Bucknell and N. A. Davino, Clin. Orthop. 329 (1996) 300.

    Google Scholar 

  3. W. W. Tomford, J. Bone Joint Surg. 77-A (1995) 1742.

    Google Scholar 

  4. D. H. R. Jenkins, ibid. 60-B (1978) 520.

    Google Scholar 

  5. R. Neugebauer, G. Helbing, D. Wolter, W. Mohr and G. Gistinger, Biomaterials 2 (1981) 182.

    Google Scholar 

  6. H. E. Groth and J. M. Schilling, J. Orthop. Res. 1 (1983) 129.

    Google Scholar 

  7. U. Weber, M. Auff'm Ordt, H. Rettig, K. J. HÜttinger, U. Rosenblatt and H. BrÜckmann, Arch. Orthop. Unfall-Chir. 89 (1977) 169.

    Google Scholar 

  8. J. C. Bokros, Carbon 15 (1977) 355.

    Google Scholar 

  9. J. Rautavuori and P. TÖrmÄlÄ, J. Mater. Sci. 14 (1979) 2020.

    Google Scholar 

  10. T. Tarvainen, H. PÄtiÄlÄ, T. Tunturi, I. Paronen, K. Lauslahti and P. Rokkanen, Acta Orthop. Scand. 56 (1985) 63.

    Google Scholar 

  11. U. T. Tarvainen, T. O. Tunturi, I. Paronen, K. R. Lauslahti, E. T. Lehtinen, P. U. Rokkanen, J. Rautavuori, P. TÖrmÄlÄ and H. V. PÄtiÄlÄ, Clin. Mater. 17 (1994) 93.

    Google Scholar 

  12. J. D. Bobyn, R. M. Pilliar, H. U. Cameron and G. C. Weatherly, Acta Orthop. Scand. 52 (1981) 145.

    Google Scholar 

  13. R. M. Pilliar, H. U. Cameron, A. G. Binnington, J. Szivek and I. Macnab, J. Biomed. Mater. Res. 13 (1979) 799.

    Google Scholar 

  14. J. D. Bobyn, H. U. Cameron, D. Abdulla, R. M. Pilliar and G. C. Weatherly, Clin. Orthop. 166 (1982) 301.

    Google Scholar 

  15. J. A. Goldner, Amer. J. Pathol. 14 (1938) 237.

    Google Scholar 

  16. R. A. Milch, D. P. Rall and J. E. Tobie, J. Bone Joint Surg. 40-A (1958) 879.

    Google Scholar 

  17. S. A. V. Swanson and M. A. R. Freeman (eds), in “The scientific basis of joint replacement” (Pitman Medical, Tunbridge Wells, 1977) p. 11.

    Google Scholar 

  18. J. C. Rice, S. C. Cowin and J. A. Bowman, J. Biomech. 21 (1988) 155.

    Google Scholar 

  19. D. T. Reilly, A. H. Burstein and V. H. Frankel, ibid. 7 (1974) 271.

    Google Scholar 

  20. J. Wolff, in “Das Gesetz der Transformation der Knochen” (Hirschwald, Berlin, 1892).

    Google Scholar 

  21. D. R. Carter and W. C. Hayes, Science 194 (1976) 1174.

    Google Scholar 

  22. R. B. Ashman and J. Y. Rho, J. Biomech. 21 (1988) 177.

    Google Scholar 

  23. D. R. Carter and D. M. Spengler, Clin. Orthop. 135 (1978) 192.

    Google Scholar 

  24. J. D. Currey, ibid. 73 (1970) 210.

    Google Scholar 

  25. R. M. Pilliar, H. U. Cameron and I. Macnab, Biomed. Eng. 10 (1975) 126.

    Google Scholar 

  26. J. Rautavuori, Personal communication.

  27. H. RÖnningen, P. Lereim, J. O. Galante, W. Rostoker, T. Turner and R. Urban, J. Biomed. Mater. Res. 17 (1983) 2.

    Google Scholar 

  28. G. E. Friedlander, J. Bone Joint Surg. 69-A (1987) 786.

    Google Scholar 

  29. T. Albrektsson, ibid. 62-B (1980) 403.

    Google Scholar 

  30. J. Craig Gray and M. W. Elves, Calcif. Tiss. Int. 29 (1979) 225.

    Google Scholar 

  31. S. D. Cook, K. A. Walsh and R. J. Haddad, Clin. Orthop. 193 (1984) 271.

    Google Scholar 

  32. L. P. Garetto, J. Chen, J. A. Parr and W. E. Roberts, Implant Dent. 4 (1995) 235.

    Google Scholar 

  33. R. D. Bloebaum, N. L. Mihalopoulus, J. W. Jensen and L. D. Dorr, J. Bone Joint Surg. 79-A (1997) 1013.

    Google Scholar 

  34. C. A. Engh, J. D. Bobyn and A. H. Glassman, ibid. 69-B (1987) 45.

    Google Scholar 

  35. R. J. Haddad Jr, S. D. Cook and K. A. Thomas, ibid. 69-A (1987) 1459.

    Google Scholar 

  36. S. D. Cook, R. L. Barrack, K. A. Thomas and R. J. Haddad Jr, J. Arthroplasty 3 (1988) 249.

    Google Scholar 

  37. D. Adams and D. F. Williams, Biomaterials 5 (1984) 59.

    Google Scholar 

  38. J. L. Kaae, J. Biomed. Mater. Res. 6 (1972) 279.

    Google Scholar 

  39. C. L. Stanitski and V. Mooney, J. Biomed. Mater. Res. Symp. 4 (1973) 97.

    Google Scholar 

  40. T. Tarvainen, T. Tunturi, J. Rautavuori, P. TÖrmÄlÄ, H. PÄtiÄlÄ and P. Rokkanen, Ann. Biomed. Eng. 14 (1986) 417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarvainen, T., Paronen, I., Tunturi, T. et al. Bone remodelling in the pores and around load bearing transchondral isoelastic porous-coated glassy carbon implants: Experimental study in rabbits. Journal of Materials Science: Materials in Medicine 9, 509–515 (1998). https://doi.org/10.1023/A:1008835821107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008835821107

Keywords

Navigation