Skip to main content
Log in

PCR amplification and cycle DNA sequencing analysis of the Chlamydia trachomatis elongation factor Tu gene

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Based on the elongation factor Tu (EF-Tu) gene of Chlamydia trachomatis, a pair of oligonucleotide primers CTUFU and CTUFD, were designed to amplify a specific target fragment of 931bp. The PCR assay could detect C. trachomatis in cervical smear specimens obtained from sex workers undergoing routine examination in an STD clinic. Distinct target bands were also amplified from at least 10ng of positive control DNA samples from cultured cells infected with C. trachomatis. PCR with these primers could differentiate C. trachomatis from eight non-chlamydial bacterial species. Further verification could be obtained from the non-digestion of C. trachomatis PCR products by MspA1I restriction endonuclease, in contrast to the digestion of the non-specific PCR products of Klebsiella and Bacillus. Direct cycle DNA sequencing of ∼450bp of the PCR products of four C. trachomatis isolates revealed complete identity of one isolate with the known sequence of serovar F, while the other three isolates harboured three phenotypically silent point mutations at codons 96, 305 and 312 of the EF-Tu gene. The sequence analyses confirm the authenticity of the target bands, reiterate the conservation and role of the EF-Tu gene in protein biosynthesis, and indicate the utility of the primers for the rapid detection of C. trachomatis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Q., Radcliffe, G., Vassallo, R., Buxton, D., O'Brien, W.J., Pelletier, D.A., Weisburg, W.G., Klinger, J.D. & Olive, D.M. 1992 Infection with a plasmid-free variant Chlamydia related to Chlamydia trachomatis identified by using multiple assays for nucleic acid detection. Journal of Clinical Microbiology 30, 2814–2821.

    Google Scholar 

  • Chernesky, M.A., Lee, H., Schachter, J., Burczak, J.D., Stamm, W.E., McCormack, W.M. & Quinn, T.C. 1994 Diagnosis of Chlamydia trachomatis urethral infection in symptomatic and asymptomatic men by testing first-void urine in a ligase chain reaction assay. Journal of Infectious Diseases 170, 1308–1311.

    Google Scholar 

  • Chow, V.T.K., Lau, Q.C. & Poh, C.L. 1994 Mapping of serovar-specific monoclonal antibody epitopes by DNA and amino acid sequence analysis of Neisseria gonorrhoeae outer membrane protein IB strains. Immunology and Infectious Diseases 4, 202–206.

    Google Scholar 

  • Cousineau, B., Cerpa, C., Lefebvre, J. & Cedergren, R. 1992 The sequence of the gene encoding elongation factor Tu from Chlamydia trachomatis compared with those of other organisms. Gene 120, 33–41.

    Google Scholar 

  • Dean, D., Schachter, J., Dawson, C.R. & Stephens, R.S. 1992 Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: a molecular epidemiologic approach to Chlamydia trachomatis infections. Journal of Infectious Diseases 166, 383–392.

    Google Scholar 

  • Frost, E.H., Deslandes, S., Veilleux, S. & Bourgaux-Ramoisy, D. 1991 Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein. Journal of Infectious Diseases 163, 1103–1107.

    Google Scholar 

  • Frost, E.H., Deslandes, S. & Bourgaux-Ramoisy, D. 1993 Sensitive detection and typing of Chlamydia trachomatis using nested polymerase chain reaction. Genitourinary Medicine 69, 290–294.

    Google Scholar 

  • Frost, E.H., Deslandes, S., Bourgaux-Ramoisy, D. & Bourgaux, P. 1995 Quantitation of Chlamydia trachomatis by culture, direct immunofluorescence and competitive polymerase chain reaction. Genitourinary Medicine 71, 239–243.

    Google Scholar 

  • Genc, M., Domeika, M. & Mardh, P.A. 1994 Cost-effectiveness of screening for Chlamydia using DNA amplification. Journal of the American Medical Association 271, 1741.

    Google Scholar 

  • Horn, J.E., Hammer, M.L., Falkow, S. & Quinn, T.C. 1986 Detection of Chlamydia trachomatis in tissue culture and cervical scrapings by in situ DNA hybridization. Journal of Infectious Diseases 153, 1155–1159.

    Google Scholar 

  • Lau, Q.C., Chow, V.T.K. & Poh, C.L. 1993 Polymerase chain reaction and direct sequencing of Neisseria gonorrhoeae protein IB gene: partial nucleotide and amino acid sequence analysis of strains S4, S11, S48 (serovar IB4) and S34 (serovar IB5). Medical Microbiology and Immunology 182, 137–145.

    Google Scholar 

  • Lau, Q.C., Chow, V.T.K. & Poh, C.L. 1995 Differentiation of Neisseria gonorrhoeae strains by polymerase chain reaction and restriction fragment length polymorphism of outer membrane protein IB genes. Genitourinary Medicine 71, 363–366.

    Google Scholar 

  • Loeffelholz, M.J., Lewinski, C.A., Silver, S.R., Purohit, A.P., Herman, S.A., Buonagurio, D.A. & Dragon, E.A. 1992 Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. Journal of Clinical Microbiology 30, 2847–2851.

    Google Scholar 

  • Mesters, J.R., Zeef, L.A.H., Hilgenfeld, R., De Graaf, J.M., Kraal, B. & Bosch, L. 1994 The structural and functional basis for the kirromycin resistance of mutant EF-Tu species in Escherichia coli. EMBO Journal 13, 4877–4885.

    Google Scholar 

  • Poh, C.L., Lau, Q.C. & Chow, V.T.K. 1995 Differentiation of Neisseria gonorrhoeae IB-3 and IB-7 serovars by direct sequencing of protein IB gene and pulsed-field gel electrophoresis. Journal of Medical Microbiology 43, 201–207.

    Google Scholar 

  • Poole, E. & Lamont, I. 1992 Chlamydia trachomatis serovar differentiation by direct sequence analysis of the variable segment 4 region of the major outer membrane protein gene. Infection and Immunity 60, 1089–1094.

    Google Scholar 

  • Rodriguez, P., Vekris, A., De Barbeyrac, B., Dutilh, B., Bonnet, J. & Bebear, C. 1991 Typing of Chlamydia trachomatis by restriction endonuclease analysis of the amplified major outer membrane protein gene. Journal of Clinical Microbiology 29, 1132–1136.

    Google Scholar 

  • Sayada, C., Denamur, E., Orfila, J., Catalan, F. & Elion, J. 1991 Rapid genotyping of the Chlamydia trachomatis major outer membrane protein by the polymerase chain reaction. FEMS Microbiology Letters 83, 73–78.

    Google Scholar 

  • Schmid, G.P. & Fontanarosa, P.B. 1995 Evolving strategies for management of the nongonococcal urethritis syndrome. Journal of the American Medical Association 274, 577–579.

    Google Scholar 

  • Scieux, C., Grimont, F., Regnault, B. & Grimont, P.A.D. 1992 DNA fingerprinting of Chlamydia trachomatis by use of ribosomal RNA, oligonucleotide and randomly cloned DNA probes. Research in Microbiology 143, 755–765.

    Google Scholar 

  • Taylor-Robinson, D. 1995 The history and role of Mycoplasma genitalium in sexually transmitted diseases. Genitourinary Medicine 71, 1–8.

    Google Scholar 

  • Yang, C.L., Maclean, I. & Brunham, R.C. 1993 DNA sequence polymorphism of the Chlamydia trachomatis omp1 gene. Journal of Infectious Diseases 168, 1225–1230.

    Google Scholar 

  • Zeef, L.A.H., Bosch, L., Anborgh, P.H., Cetin, R., Parmeggiani, A. & Hilgenfeld, R. 1994 Pulvomycin-resistant mutants of E. coli elongation factor Tu. EMBO Journal 13, 5113–5120.

    Google Scholar 

  • Zhang, Y.X., Shi, Y., Zhou, M. & Petsko, G.A. 1994 Cloning, sequencing, and expression in Escherichia coli of the gene encoding a 45-kilodalton protein, elongation factor Tu, from Chlamydia trachomatis serovar F. Journal of Bacteriology 176, 1184–1187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, V., Loh, E. & Chan, R. PCR amplification and cycle DNA sequencing analysis of the Chlamydia trachomatis elongation factor Tu gene. World Journal of Microbiology and Biotechnology 14, 77–81 (1997). https://doi.org/10.1023/A:1008828601521

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008828601521

Navigation