Skip to main content
Log in

Shock Wave Fabricated Ceramic-Metal Nozzles

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti (15 vol.-%), B4C-Al, and TiB2-Al, with an Al content typically between 15–20 vol.-%. Here, the B4C-Ti was only shock-compacted, while the other two cermets were shock compacted followed by melt infiltration with Al.

The materials were subjected to gradually more severe testing conditions. Slabs of the materials were first tested for thermal shock resistance in an acetylene flame, followed by testing in the exhaust gas stream of a rocket propellant, and thereafter as a cylindrical insert in a nozzle of TZM alloy. The B4C-Ti composite showed erosion and cracking after the first test in the propellant flame, while the B4C-Al composite failed the insert tests. The TiB2-Al composite performed well under all conditions. A venturi nozzle of that material was formed during compaction. This real, shaped nozzle was shown to function well, even during repeated 3–6 s tests. This could be explained by the resistance of TiB2 to molten Al, the high thermal conductivity of the TiB2-Al cermet and the in situ formation of a protective layer, consisting mainly of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das, D. K., Moore, G. R., and Boyer, C. T., 'Heat Transfer Studies on a Rocket Nozzle for Naval Application', Naval Engineers J., Jan. 1988.

  2. Evans, A. G. and Zok, F. W., 'The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites', J. Mater. Sci. 29, 1994, 3857-3896.

    Google Scholar 

  3. Briggs, J., 'Advanced Ceramic Matrix, Metal Matrix and Carbon-Carbon Composites', Mater. Techn. Publ., 1990.

  4. Cutler, R. A., in Ceramics and Glasses, ASM Int., 1991, pp. 785-803.

  5. Knoch, H., in Advanced Ceramic Materials, R. J. Brook (ed.), Pergamon Press, Oxford, England, 1991, pp. 35-38.

    Google Scholar 

  6. Prümmer, R., Ber. Dt. Keram. Ges. 50, 1973, 75-81.

    Google Scholar 

  7. Prümmer, R., Explosivverdichtung Pulvriger Substanzen, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  8. Bergmann, O. R. and Bailey, N. F., 'Explosive Shock Synthesis of Diamond', in High Pressure Explosive Processing of Ceramics, R. A. Graham and A. B. Sawaoka (eds.), Trans. Tech. Publ., Switzerland, 1987.

    Google Scholar 

  9. Araki, M. and Kuroyama, Y., 'Shock Synthesized and Static Sintered Boron-Nitride Cutting Tool', Physica 139 & 140B, 1986, 819-821.

    Google Scholar 

  10. Blazynski, T. Z., Dynamically Consolidated Composites: Manufacture and Properties, Elsevier Applied Science, London and New York, 1992.

    Google Scholar 

  11. Carton, E. P., Hofmeijer, M., Stuivinga, M., and de Wijn, J. R., in Proc. 5th European Conf. on Advanced Materials, Processes and Applications EUROMAT '97, Vol. 2, L. A. J. L. Sarton and H. B. Zeedijk (eds.), Neth. Soc. for Mater. Sci., Zwijndrecht, 1997, pp. 155-158.

    Google Scholar 

  12. Meyers, M. A., Thadhani, N. N., and Yu, L.-H., 'Explosive Shock Wave Consolidation of Metal and Ceramic Powders', in Shock Waves for Industrial Application, L. E. Murr (ed.), Noyes Publications, New Jersey, 1988, pp. 265-332.

    Google Scholar 

  13. Freim, J., McKittrick, J., and Nellis, W. J., 'Densification Behavior of Dynamically Shock Compacted Al2O3/ZrO2 Powders Synthesized through Rapid Solidification', Metall. Mater. Trans. 26A, 1995, 2503-2509.

    Google Scholar 

  14. Carton, E. P., Verbeek, H. J., Stuivinga, M., and Schoonman, J., 'Dynamic Compaction of Powders by an Oblique Detonation Wave in the Cylindrical Configuration', J. Appl. Phys. 81(7), 1997, 3038-3045.

    Google Scholar 

  15. Meyers, M. A. and Wang, S. L., Acta Metall. 36(4), 1988, 925-936.

    Google Scholar 

  16. Carton, E. P., Stuivinga, M., and Verbeek, H. J., 'Crack Prevention During Shock Compaction of Powders', submitted to Metall. Mater. Trans. A.

  17. Stuivinga, M., Carton, E. P., and Maas, A., Patent Application no. PCT/NL96/00102.

  18. Donners, M., unpublished work.

  19. Carton, E. P., Stuivinga, M., and Schoonman, J., 'Melt Infiltration of Shock Compacted Ceramics', submitted to J. Am. Ceram. Soc.

  20. Pyzik, A. J. and Beaman, D. R., 'A1-B-C Phase Development and Effects on Mechanical Properties of B4C/A1-Derived Composites', J. Am. Ceram. Soc. 78(2), 1995, 305-312.

    Google Scholar 

  21. Stuivinga, M. and Carton, E. P., 'Shock Wave Compacted Melt Infiltrated Ceramics', Proc. 1997 APS Conf. on Shock Compression of Condensed Matter 1997, M. A. Meyers and L. A. Murr (eds.), Amherst, MA, USA, 1997.

  22. Gorden, S. and McBride, B., 'Computer Program for Calculation of Complex Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations', in NASA SP-273, Interim revision, March 1976, NASA, Washington DC.

    Google Scholar 

  23. Brogan, R., 'Corrosion of Rocket Nozzle Metallic Throats in Oxidizing Propellant Environments', Jannaf Propulsion Meeting, New Orleans, LA, 26–28 May 1981.

  24. Ellis, R. A., 'Solid Rocket Motor Nozzles', 1975 Jun. NASA-SP-8115 * N76-20214, 42, NASA, Washington DC.

    Google Scholar 

  25. Bond, G. M. and Inal, O. T., 'Shock Compacted Aluminum/Boron Carbide Composite', Composites Engineering 5, 1995, 9-16.

    Google Scholar 

  26. Buter, J. E. and Troost, G. K., 'Results of Post Firing Examination of Igniter Nozzles of the Vulcain Engine,' in Space Applications of Advanced Structured Materials, ESA SP-303, Paris, 1990.

  27. Supplied by UCAR Carbide Company France.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carton, E.P., Stuivinga, M., Keizers, H. et al. Shock Wave Fabricated Ceramic-Metal Nozzles. Applied Composite Materials 6, 139–165 (1999). https://doi.org/10.1023/A:1008802404304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008802404304

Navigation