Skip to main content
Log in

Driving force and nucleation of supersonic dislocations

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The answer to the question how fast a dislocation can travel through a crystal is at the heart of understanding the dynamics of mechanical deformation. Until recently it was believed that dislocations cannot surmount the sound barrier at the shear wave velocity since the energy of the dislocation has a singularity there. Using atomistic simulation we have then shown that dislocations can in fact move faster than the speed of sound if they are subjected to high shear stresses and if they are already created as supersonic dislocations at a strong stress concentration. In this manuscript the nucleation conditions are elaborated in more detail and the atomistic simulations are analysed further. To do so, the energetics and the forces on supersonic dislocations are studied in the framework of the Peierls model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gumbsch, P. and Gao, H., Science, 283 (1999) 965.

    Article  CAS  Google Scholar 

  2. Hirth, J.P. and Lothe, J., Theory of Dislocations, Wiley, New York, NY, 1982.

    Google Scholar 

  3. Schiotz, J., Jacobsen, K.W. and Nielsen, O.H., Phil. Mag. Lett., 72 (1995) 245.

    Google Scholar 

  4. Eshelby, J.D., Proc. R. Soc. London, A62 (1949) 307.

    Google Scholar 

  5. Gao, H., Huang, Y., Gumbsch, P. and Rosakis, A.J., J. Mech. Phys. Solids, 47 (1999) 1941.

    Article  CAS  Google Scholar 

  6. Rosakis, A.J., Samudrala, O. and Coker, D., Science, 284 (1999) 1337.

    Article  CAS  Google Scholar 

  7. Gumbsch, P., Z. Metallkd., 87 (1996) 341.

    CAS  Google Scholar 

  8. Finnis, M.W. and Sinclair, J.E., Phil. Mag. A, 50 (1984) 45.

    CAS  Google Scholar 

  9. Ackland, G.J. and Thetford, R., Phil. Mag. A, 56 (1987) 15.

    CAS  Google Scholar 

  10. Weertman, J. and Weertman, J.R., In Nabarro, F.R.N. (Ed.) Dislocations in Solids, Vol. 3, North-Holland, Amsterdam, 1980.

    Google Scholar 

  11. Kohlhoff, S., Gumbsch, P. and Fischmeister, H.F., Phil. Mag. A, 64 (1991) 851.

    Google Scholar 

  12. deCelis, B., Argon, A.S. and Yip, S., J. Appl. Phys., 54 (1983) 4864.

    Article  CAS  Google Scholar 

  13. Abraham, F.F., Brodbeck, D., Rafey, R.A. and Rudge, W.E., Phys. Rev. Lett., 73 (1994) 272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumbsch, P., Gao, H. Driving force and nucleation of supersonic dislocations. Journal of Computer-Aided Materials Design 6, 137–144 (1999). https://doi.org/10.1023/A:1008789505150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008789505150

Navigation