Skip to main content
Log in

The stress-velocity relationship of twinning partial dislocations and the phonon-based physical interpretation

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The dependence of dislocation mobility on stress is the fundamental ingredient for the deformation in crystalline materials. Strength and ductility, the two most important properties characterizing mechanical behavior of crystalline metals, are in general governed by dislocation motion. Recording the position of a moving dislocation in a short time window is still challenging, and direct observations which enable us to deduce the speed-stress relationship of dislocations are still missing. Using large-scale molecular dynamics simulations, we obtain the motion of an obstacle-free twinning partial dislocation in face centred cubic crystals with spatial resolution at the angstrom scale and picosecond temporal information. The dislocation exhibits two limiting speeds: the first is subsonic and occurs when the resolved shear stress is on the order of hundreds of megapascal. While the stress is raised to gigapascal level, an abrupt jump of dislocation velocity occurs, from subsonic to supersonic regime. The two speed limits are governed respectively by the local transverse and longitudinal phonons associated with the stressed dislocation, as the two types of phonons facilitate dislocation gliding at different stress levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, Proc. R. Soc. A 145, 362 (1934).

    Article  ADS  Google Scholar 

  2. M. Polanyi, Z. Physik 89, 660 (1934).

    Article  ADS  Google Scholar 

  3. E. Orowan, Z. Physik 89, 605 (1934).

    Article  ADS  Google Scholar 

  4. M. A. Meyer, Dynamic Behavior of Materials (John Wiley & Sons Inc., Hoboken, 1994), p. 323.

    Book  Google Scholar 

  5. A. S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, Oxford, 2007).

    Book  Google Scholar 

  6. A. J. Rosakis, O. Samudrala, and D. Coker, Science 284, 1337 (1999).

    Article  ADS  Google Scholar 

  7. P. Gumbsch, and H. Gao, Science 283, 965 (1999).

    Article  ADS  Google Scholar 

  8. J. R. Rice, J. Mech. Phys. Solids 40, 239 (1992).

    Article  ADS  Google Scholar 

  9. C. C. Chen, C. Zhu, E. R. White, C. Y. Chiu, M. C. Scott, B. C. Regan, L. D. Marks, Y. Huang, and J. Miao, Nature 496, 74 (2013).

    Article  ADS  Google Scholar 

  10. J. N. Clark, J. Ihli, A. S. Schenk, Y. Y. Kim, A. N. Kulak, J. M. Campbell, G. Nisbet, F. C. Meldrum, and I. K. Robinson, Nat. Mater. 14, 780 (2015), arXiv: 1501.02853.

    Article  ADS  Google Scholar 

  11. W. G. Johnston, and J. J. Gilman, J. Appl. Phys. 30, 129 (1959).

    Article  ADS  Google Scholar 

  12. S. Schäfer, Phys. Stat. Solidi 19, 297 (1967).

    Article  ADS  Google Scholar 

  13. F. C. Frank, Proc. Phys. Soc. A 62, 131 (1949).

    Article  ADS  Google Scholar 

  14. J. D. Eshelby, Proc. Phys. Soc. A 62, 307 (1949).

    Article  ADS  Google Scholar 

  15. Y. Y. Earmme, and J. H. Weiner, J. Appl. Phys. 45, 603 (1974).

    Article  ADS  Google Scholar 

  16. D. L. Olmsted, L. G. Hectorjr, W. A. Curtin, and R. J. Clifton, Model. Simul. Mater. Sci. Eng. 13, 371 (2005).

    Article  ADS  Google Scholar 

  17. Z. Jin, H. Gao, and P. Gumbsch, Phys. Rev. B 77, 094303 (2008).

    Article  ADS  Google Scholar 

  18. H. Tsuzuki, P. S. Branicio, and J. P. Rino, Acta Mater. 57, 1843 (2009).

    Article  Google Scholar 

  19. P. Rosakis, Phys. Rev. Lett. 86, 95 (2001).

    Article  ADS  Google Scholar 

  20. V. Nosenko, S. Zhdanov, and G. Morfill, Phys. Rev. Lett. 99, 025002 (2007), arXiv: 0709.1782.

    Article  ADS  Google Scholar 

  21. E. Faran, and D. Shilo, Phys. Rev. Lett. 104, 155501 (2010).

    Article  ADS  Google Scholar 

  22. V. Nosenko, G. E. Morfill, and P. Rosakis, Phys. Rev. Lett. 106, 155002 (2011), arXiv: 1105.0614.

    Article  ADS  Google Scholar 

  23. J. J. Gilman, Metall. Mat. Trans. A 31, 811 (2000).

    Article  Google Scholar 

  24. W. F. Greenman, T. Vreeland Jr., and D. S. Wood, J. Appl. Phys. 38, 3595 (1967).

    Article  ADS  Google Scholar 

  25. K. Yasutake, S. Shimizu, M. Umeno, and H. Kawabe, J. Appl. Phys. 61, 940 (1987).

    Article  ADS  Google Scholar 

  26. F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz de La Rubia, and M. Seager, Proc. Natl. Acad. Sci. USA 99, 5783 (2002).

    Article  ADS  Google Scholar 

  27. F. F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz de La Rubia, and M. Seager, Proc. Natl. Acad. Sci. USA 99, 5777 (2002).

    Article  ADS  Google Scholar 

  28. S. Yip, Nat. Mater. 3, 11 (2004).

    Article  ADS  Google Scholar 

  29. M. J. Buehler, and H. J. Gao, Nature 439, 307 (2006).

    Article  ADS  Google Scholar 

  30. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Phys. Rev. Lett. 100, 025502 (2008).

    Article  ADS  Google Scholar 

  31. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao, Nature 464, 877 (2010).

    Article  ADS  Google Scholar 

  32. J. P. Hirth, and J. Lothe, Theory of Dislocations (Krieger Publishing Company, Malabar, 1982).

    MATH  Google Scholar 

  33. N. Bhate, R. J. Clifton, and R. Phillips, AIP Conf. Proc. 620, 339 (2002).

    Article  ADS  Google Scholar 

  34. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  ADS  Google Scholar 

  35. M. S. Daw, and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  ADS  Google Scholar 

  36. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Phys. Rev. B 63, 224106 (2001).

    Article  ADS  Google Scholar 

  37. X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens, and T. F. Kelly, Acta Mater. 49, 4005 (2001).

    Article  Google Scholar 

  38. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  ADS  Google Scholar 

  39. R. Peierls, Proc. Phys. Soc. 52, 34 (1940).

    Article  ADS  Google Scholar 

  40. F. R. N. Nabarro, Mater. Sci. Eng.-A 234-236, 67 (1997).

    Article  Google Scholar 

  41. J. A. Gorman, D. S. Wood, and T. Vreeland Jr., J. Appl. Phys. 40, 833 (1969).

    Article  ADS  Google Scholar 

  42. J. J. Gilman, Micromechanics of Flow in Solids (McGraw-Hill, New York, 1969).

    Google Scholar 

  43. T. Ninomiya, J. Phys. Soc. Jpn. 25, 830 (1968).

    Article  ADS  Google Scholar 

  44. J. Weertman, and J. R. Weertman, Moving Dislocations, edited by F. R. N. Nabarro (North-Holland Publishing Company, Oxford, 1980), pp. 1–59.

  45. M. Planck, Ann. Phys.-Berlin 4, 553 (1901).

    Article  ADS  Google Scholar 

  46. A. Einstein, Ann. Phys.-Berlin 22, 569 (1907).

    Article  ADS  Google Scholar 

  47. V. Celli, and N. Flytzanis, J. Appl. Phys. 41, 4443 (1970).

    Article  ADS  Google Scholar 

  48. S. Ishioka, J. Phys. Soc. Jpn. 30, 323 (1971).

    Article  ADS  Google Scholar 

  49. O. Kresse, and L. Truskinovsky, J. Mech. Phys. Solids 51, 1305 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  50. O. Kresse, and L. Truskinovsky, J. Mech. Phys. Solids 52, 2521 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  51. G. I. Taylor, and H. Quinney, Proc. R. Soc. A 143, 307 (1934).

    Article  ADS  Google Scholar 

  52. J. J. Mason, A. J. Rosakis, and G. Ravichandran, Mech. Mater. 17, 135 (1994).

    Article  Google Scholar 

  53. X. Zhang, A. Acharya, N. J. Walkington, and J. Bielak, J. Mech. Phys. Solids 84, 145 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  54. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).

    Article  ADS  Google Scholar 

  55. O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer, Int. J. Plasticity 16, 1391 (2000).

    Article  Google Scholar 

  56. Y. Li, L. Zhu, Y. Liu, Y. Wei, Y. Wu, D. Tang, and Z. Mi, J. Mech. Phys. Solids 61, 2588 (2013).

    Article  ADS  Google Scholar 

  57. J. Weertman, J. Appl. Phys. 38, 5293 (1967).

    Article  ADS  Google Scholar 

  58. W. Cai, and V. V. Bulatov, Mater. Sci. Eng.-A 387-389, 277 (2004).

    Article  Google Scholar 

  59. B. Devincre, T. Hoc, and L. Kubin, Science 320, 1745 (2008).

    Article  ADS  Google Scholar 

  60. K. Kang, V. V. Bulatov, and W. Cai, Proc. Natl. Acad. Sci. USA 109, 15174 (2012).

    Article  ADS  Google Scholar 

  61. U. S. Lindholm, Deformation Maps in the Region of High Dislocation Velocity (Springer Berlin Heidelberg, Berlin, 1979).

    Book  Google Scholar 

  62. K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Science 296, 1681 (2002).

    Article  ADS  Google Scholar 

  63. Z. H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, Scripta. Mater. 54, 1163 (2006).

    Article  Google Scholar 

  64. C. Kittel, Introduction to Solid State Physics, 8th ed (Wiley, Hoboken, 2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YuJie Wei.

Electronic supplementary material

Supplementary material, approximately 1.95 MB.

Supplementary material, approximately 1.79 MB.

Supplementary material, approximately 1.95 MB.

Supplementary material, approximately 1.73 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Peng, S. The stress-velocity relationship of twinning partial dislocations and the phonon-based physical interpretation. Sci. China Phys. Mech. Astron. 60, 114611 (2017). https://doi.org/10.1007/s11433-017-9076-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9076-8

Keywords

Navigation