Skip to main content
Log in

Hydrolysis of Titanium Alkoxides: Thermochemical, Electron Microscopy, Saxs Studies

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrolysis of Ti(OR)4 (R = Et, iPr, nBu) at various concentrations of titanium alkoxides and ratios h = [H2O] /[Ti(OR)4] is studied in alcoholic medium by means of calorimetry, electron microscopy, SAXS, and chemical analysis. The measured values for heat of hydrolysis of Ti(OR)4 by excess water (−Δ H h ) at 298.15 K comprise 14.2, 64.9, 19.3 kJ/mol for R = Et, R = Et, iPr, nBu respectively. −Δ H h increases drastically in the region of 0<h<1 and demonstrates practically no changes with further increase of h ratio. In the solid hydrolysis product with the composition TiO x (OR)4−2x ·y ROH, both x and y increase with increase of Ti(OR)4 concentration in solution. Bushy network first formed in solution as a result of hydrolysis gradually structures with formation of well-shaped spherical particles with diameters ≥0.2μm. SAXS curves analysis in the range of scattering vector values s = 0.07–4.26 nm−1 for Ti(OBu)4 hydrolysis products allows us to suggest their multilevel nature. Speculations on the structure of titanium oxobutoxide were made on the basis of the well-known structural data for crystalline first hydrolysis products of Ti(OEt)4 and Ti(Oi Pr)4. It is suggested to perform hydrolysis of Ti(OBu)4 with addition of water in two steps which allows us to decrease the rate of the solid precipitate formation, to regulate particles morphology in a wide range and to obtain well-shaped spherical species more than one micron in size. The influence of the powder size distribution on the grain growth during ceramic sintering is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  2. J. Livage, M. Henry, and C. Sanchez, Progr. Solid State Chem. 18, 259 (1988).

    Google Scholar 

  3. M.T. Harris, A. Singhal, J.L. Look, J.R. Smith-Kristensen, J.S. Lin, and L.M. Toth, J. Sol-Gel Sci. and Techn. 8, 41 (1997).

    Google Scholar 

  4. J. Blanchard, S. Barboux-Doeuff, J. Maquet, and C. Sanchez, New J. Chem. 19, 929 (1995).

    Google Scholar 

  5. V.W. Day, T.A. Eberspacher, W.G. Klemperer, and C.W. Park, J. Am. Chem. Soc. 115, 8469 (1993).

    Google Scholar 

  6. V.W. Day, T.A. Eberspacher, Y. Chen, J. Hao, and W.G. Klemperer, Inorganica Chimica Acta. 229, 391 (1995).

    Google Scholar 

  7. T. Boyd, J. Polymer Sci. 7, 591 (1951).

    Google Scholar 

  8. V.K. LaMer and R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950).

    Google Scholar 

  9. J.H. Jean and T.A. Ring, Langmuir. 2, 251 (1986).

    Google Scholar 

  10. E.A. Barringer and H.K. Bowen, J. Am. Ceram. Soc. 65, C-199 (1982).

    Google Scholar 

  11. E.A. Barringer and H.K. Bowen, Langmuir. 1, 414 (1985).

    Google Scholar 

  12. J.H. Jean and T.A. Ring, Am. Ceram. Soc. Bull. 65, 1574 (1986).

    Google Scholar 

  13. M. Kallala, C. Sanchez, and B. Cabane, Physical Review E. 48, 3692 (1993).

    Google Scholar 

  14. E.P. Kovsman, S.I. Andruseva, L.I. Solovjeva, V.I. Fedyaev, M.N. Adamova, and T.V. Rogova, J. Sol-Gel Sci. and Techn. 2, 61 (1994).

    Google Scholar 

  15. I.P. Romm, A.M. Lepeshkin, B.D. Roschin, A.D. Mukhin, and E.N. Gur'yanova Russian J. Phys. Chem. 65, 450 (1991).

    Google Scholar 

  16. L.A. Feigin and D.I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering (Plenum Press, New-York, 1987).

    Google Scholar 

  17. A. Guinier, Ann. Phys. 12, 161 (1939).

    Google Scholar 

  18. J.E. Martin and A.J. Hurd, J. Appl. Cryst. 20, 61 (1987).

    Google Scholar 

  19. G. Porod and Z. Kolloid, 125, 51, 109 (1952).

    Google Scholar 

  20. C.N. Caughlan, W. Katz, and Wm. Hodgson, J. Am. Chem. Soc. 73, 5654 (1951).

    Google Scholar 

  21. F. Babonneau, S. Doeuff, A. Leaustic, C. Sanchez, C. Cartier, and M. Verdaguer, Inorg. Chem. 27, 3166 (1988).

    Google Scholar 

  22. A.N. Nesmeyanov, E.M. Brainina, and R.H. Freidlina, Doklady Academii Nauk SSSR, 85, 571 (1952) (Russian).

    Google Scholar 

  23. G. Beaucage, J. Apll. Cryst. 28, 717 (1995).

    Google Scholar 

  24. G. Beaucage, J. Apll. Cryst. 29, 134 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubko, N., Yanovskaya, M., Romm, I. et al. Hydrolysis of Titanium Alkoxides: Thermochemical, Electron Microscopy, Saxs Studies. Journal of Sol-Gel Science and Technology 20, 245–262 (2001). https://doi.org/10.1023/A:1008769918083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008769918083

Navigation