Skip to main content
Log in

Beyond the mean-field formulation of the production bias model

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The Production Bias Model was first conceptualized in the Silkeborg Workshop 10 years ago, to incorporate effects due to intracascade recombination, clustering and thermal dissociation of the clusters into the theory of microstructure evolution. Comparison of the theory with experimental results clearly supports the model, which has since been thoroughly reviewed. However, several important issues related to the probabilistic nature of cascade initiation and the statistical nature of the microstructure development have not received adequate attention. The most important feature of PBM is the production of damage in the form of point-defect clusters, both mobile and immobile, in cascades. Under most circumstances, the cluster population is one of the most important, if not dominant, components of the microstructure, the evolution of which controls the behaviour of the system under irradiation. Due to the small size of the point-defect clusters, fluctuations in the point-defect flux, caused by the stochastic nature of point-defect production and transport, govern their size distribution and number densities. Taking into account the effects of the fluctuating fluxes requires the formulation of PBM beyond the mean-field approximation. In this keynote paper, the readers are introduced to investigations in this vital area and the significance of the results obtained to the application of the production bias model in the analysis of microstructure development in solids during irradiation by neutrons and heavy ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brinkman, J.A., J. Appl. Phys., 25 (1954) 961; Am. J. Phys., 24 (1956) 246.

    Article  CAS  Google Scholar 

  2. Seeger, A., Proceedings of the Second International Conference on Peaceful Uses of Atomic Energy, Geneva, 1958, Vol. 6, United Nations, New York, NY, p. 250; Radiation Damage In Solids, 1962, Vol. 1, International Atomic Energy Agency, Vienna, p. 101.

    Google Scholar 

  3. Heinisch, H.L., Rad. Effects Defect Solids, 113 (1990) 53.

    Google Scholar 

  4. Heinisch, H.L. and Singh, B.N., Phil. Mag., A67 (1993) 407.

    Google Scholar 

  5. Diaz de la Rubia, T. and Guinan, M.W., J. Nucl. Mater., 174 (1990) 151; Phys. Rev. Lett., 66 (1991) 2766; Mater. Sci. Forum, 97–99 (1992) 23.

    Article  CAS  Google Scholar 

  6. English, C.A., Phythian, W.J. and Foreman, A.J.E., J. Nucl. Mater., 174 (1990) 135.

    Article  CAS  Google Scholar 

  7. Foreman, A.J.E., English, C.A. and Phythian, W.J., AEA Technology Harwell, Report No. AEA-TRS-2031, 1991. Phil. Mag., A66 (1992) 655, 671.

    Google Scholar 

  8. English, C.A. and Jenkins, M.L., Mater. Sci. Forum, 15-18 (1987) 1003.

    CAS  Google Scholar 

  9. Howe, L.M., McGurn, J.F. and Gilbert, R.W., Acta Metall., 14 (1966) 801.

    Article  CAS  Google Scholar 

  10. Haga, K., Baily, A.C., King, W.E., Merkle, K.L. and Meshii, M., In Fisher, R.M., Gronsky, R. and Westmacott, H.M. (Eds), Proc. 7th Conf. on HVEM, Berkeley, CA, CONF-830819, 1983.

  11. von Guerard, B. and Peisl, J., Proc. Int. Conf. on the Fundamental Aspects of Radiation Damage In Metals, Gatlinberg, TN, In Robinson, M.T. and Young, W.R. (Eds), CONF-751006, USERDA, p. 287; J. Appl. Crystallogr., 8 (1975) 161.

  12. Grasse, D., von Guerard, B. and Peisl, J., J. Nucl. Mater., 120 (1984) 304.

    Article  CAS  Google Scholar 

  13. Ranch, R., Peisl, J., Schmalzbauer, A. and Wallner, G., J. Nucl. Mater., 168 (1989) 101.

    Article  Google Scholar 

  14. Yoshida, N., Akashi, Y., Kitajima, K. and Kiritani, M., J. Nucl. Mater., 133-134 (1985) 405.

    Article  CAS  Google Scholar 

  15. Shimomura, Y., Fukoshima, H. and Guinan, M.W., J. Nucl. Mater., 174 (1990) 210.

    Article  CAS  Google Scholar 

  16. Woo, C.H. and Singh, B.N., Phys. Stat. Sol. (B), 159 (1990) 609.

    Google Scholar 

  17. Woo, C.H. and Singh, B.N., J. Nucl. Mater., 179-181 (1991) 1207.

    Article  Google Scholar 

  18. Woo, C.H. and Singh, B.N., Phil. Mag., A65 (1992) 889.

    Google Scholar 

  19. Woo, C.H., Singh, B.N. and Semenov, A.A., J. Nucl. Mater., 239 (1996) 7.

    Article  CAS  Google Scholar 

  20. Mansur, L.K., Coghlan, W.A. and Brailsford, A.D., J. Nucl. Mater., 85-86 (1979) 591.

    Article  CAS  Google Scholar 

  21. Mansur, L.K., Coghlan, W.A., Relley, T.C. and Wolfer, W.G., J. Nucl. Mater., 103-104 (1981) 1257.

    Article  Google Scholar 

  22. Mansur, L.K., Brailsford, A.D. and Coghlan, W.A., Acta Metall., 33 (1985) 1407.

    Article  Google Scholar 

  23. Hayns, M.R. and Mansur, L.K., Nucl. Instr. Meth., B16 (1986) 126.

    CAS  Google Scholar 

  24. Semenov, A.A. and Woo, C.H., J. Nucl. Mater., 233-237 (1996) 1045.

    Article  CAS  Google Scholar 

  25. Woo, C.H., Semenov, A.A. and Singh, B.N., J. Nucl. Mater., 206 (1993) 170.

    Article  CAS  Google Scholar 

  26. Singh, B.N., Leffers, T. and Horsewell, A., Phil. Mag., A53 (1986) 233.

    Google Scholar 

  27. Leffers, T., Singh, B.N., Volobuyev, A.V. and Gann, V.V., Phil. Mag., A53 (1986) 243.

    Google Scholar 

  28. English, C.A., Eyre, B.L. and Muncie, J.W., Harwell Report AERE-R-12188 (1986).

  29. English, C.A., Eyre, B.L. and Muncie, J.W., Phil. Mag., A56 (1987) 453.

    Google Scholar 

  30. Singh, B.N., Horsewell, A., Toft, P. and Edwards, D.J., J. Nucl. Mater., 224 (1995) 131.

    Article  CAS  Google Scholar 

  31. Singh, B.N. and Foreman, A.J.E., Phil. Mag., A66 (1992) 975.

    Google Scholar 

  32. Trinkaus, H., Singh, B.N. and Foreman, A.J.E., J. Nucl. Mater., 199 (1992) 1; J. Nucl. Mater., 206 (1993) 200.

    Article  CAS  Google Scholar 

  33. Singh, B.N., Golubov, S.I., Trinkaus, H., Serra, A., Osetsky, Yu.N. and Barashev, A.V., J. Nucl. Mater., 251 (1997) 107.

    Article  CAS  Google Scholar 

  34. Gösele, U.M., Prog. Reaction Kin., 13 (1984) 63.

    Google Scholar 

  35. Garner, F.A., Hamilton, M.L., Shikama, T., Edwards, D.J. and Newkirk, J.W., J. Nucl. Mater., 191-194 (1992) 386.

    Article  CAS  Google Scholar 

  36. Watanabe, H. and Garner, H.H., J. Nucl. Mater., 212-215 (1994) 370.

    Article  CAS  Google Scholar 

  37. Muroga, T. and Yoshida, N., J. Nucl. Mater., 212-215 (1994) 266.

    Article  CAS  Google Scholar 

  38. Woo, C.H. and Frank, W., J. Nucl. Mater., 137 (1985) 7.

    Article  CAS  Google Scholar 

  39. Woo, C.H. and Frank, W., Mat. Sci. Forum, 15-18 (1987) 875.

    Article  CAS  Google Scholar 

  40. Kiritani, M., Yoshiie, T., Kojima, S. and Satoh, Y., J. Nucl. Mater., 205 (1993) 460.

    Article  CAS  Google Scholar 

  41. Katz, L. and Wiedersich, H., J. Chem. Phys., 55 (1971) 1414.

    Article  CAS  Google Scholar 

  42. Wiedersich, H., J. Nucl. Mater., 205 (1993) 40.

    Article  CAS  Google Scholar 

  43. Ghoniem, N.M., Phys. Rev., B39 (1989) 11810.

    Google Scholar 

  44. Semenov, A.A. and Woo, C.H., J. Nucl. Mater., 205 (1993) 74.

    Article  CAS  Google Scholar 

  45. Kitajima, K., Yochida, N. and Kuramoto, E., J. Nucl. Mater., 103-104 (1981) 1355.

    Article  Google Scholar 

  46. Kitajima, K., J. Nucl. Mater., 133-134 (1985) 64.

    Article  CAS  Google Scholar 

  47. Kitajima, K., Akashi, Y. and Kuramoto, E., J. Nucl. Mater., 133-134 (1985) 486.

    Article  CAS  Google Scholar 

  48. Heinisch, H.L. and Singh, B.N., J. Nucl. Mater., 251 (1997) 77.

    Article  CAS  Google Scholar 

  49. Semenov, A.A. and Woo, C.H., Appl. Phys., A67 (1998) 193.

    Google Scholar 

  50. Semenov, A.A. and Woo, C.H., Appl. Phys. (in press).

  51. Singh, B.N. and Zinkle, S.J., J. Nucl. Mater., 206 (1993) 212.

    Article  CAS  Google Scholar 

  52. Trinkaus, H., Naundorf, V., Singh, B.N. and Woo, C.H., J. Nucl. Mater., 210 (1994) 244.

    Article  CAS  Google Scholar 

  53. Trinkaus, H., J. Nucl. Mater., 174 (1990) 178.

    Article  CAS  Google Scholar 

  54. Tokuyama, M., Physica, A109 (1981) 128.

    Google Scholar 

  55. Gardiner, C.W., Handbook of Stochastic Methods, second edition, Springer-Verlag, Berlin (1994) 33, p. 80.

    Google Scholar 

  56. Semenov, A.A. and Woo, C.H., unpublished results. Conference of International Union of Material sence

  57. Bacon, D.J., Gao, F. and Osetsky, Yu.N., J. Comput.-Aided Mater. Design, 6 (1999) 225 (this issue).

    Article  CAS  Google Scholar 

  58. Ullmaier, H. and Schilling, W., Physics of Modern Materials, International Atomic Energy Agency, Vienna, 1980, p. 301.

    Google Scholar 

  59. Zinkle, S.J., Maziasz, P.J. and Stoller, R.E., J. Nucl. Mater., 206 (1993) 266.

    Article  CAS  Google Scholar 

  60. Woo, C.H. and Semenov, A.A., Phil. Mag., A67 (1993) 1247.

    Google Scholar 

  61. Klyatskin, V.I., Statistical Description of Dynamic Systems with Fluctuating Parameters, Nauka, Moscow, 1975.

    Google Scholar 

  62. Horsthemke, W. and Lefever, R., Noise-Induced Transitions, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  63. Garner, F.A., Materials Science and Technology: A Comprehensive Treatment, Vol. 10A, Nuclear Materials, Part 1, VCH Publishers, Weinheim, 1994, p. 420.

    Google Scholar 

  64. Katoh, Y., Kohno, A. and Kohyama, A., J. Nucl. Mater., 212-215 (1994) 464.

    Article  CAS  Google Scholar 

  65. Leffers, T., Singh, B.N., Volobuyev, A.V. and Gann, V.V., Phil. Mag., A53 (1986) 243.

    Google Scholar 

  66. Zinkle, S.J. and Singh, B.N., J. Nucl. Mater., 199 (1993) 173.

    Article  CAS  Google Scholar 

  67. Semenov, A.A. and Woo, C.H., J. Nucl. Mater., 212-215 (1994) 310.

    Article  CAS  Google Scholar 

  68. Katoh, Y., Kohno, Y. and Kohyama, A., J. Nucl. Mater., 212-215 (1994) 464.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, C. Beyond the mean-field formulation of the production bias model. Journal of Computer-Aided Materials Design 6, 247–275 (1999). https://doi.org/10.1023/A:1008761703994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008761703994

Navigation