Skip to main content
Log in

Multi-lattice Monte Carlo model of thin films

  • Published:
Journal of Computer-Aided Materials Design

Abstract

In previous publications, an atomistic simulator based on a single-lattice or a dual-lattice Monte Carlo method has been proposed and applied to the studies of microstructure evolution in thin films. In this paper, a multi-lattice Monte Carlo model, an extension to our atomistic simulator of deposition in three dimensions (ADEPT), is presented and applied to the studies of texture competition in thin films. Multiple lattices are mapped onto a single reference lattice, with resulting computational demands (memory and speed) being comparable to those in the single-lattice Monte Carlo model. It is therefore possible to simulate growth competition among crystallites of different orientations, and to study texture formation and explore optimal deposition conditions. As an application, the predominant texture is investigated as a function of collimation and deposition rate. Grains with low energy surfaces parallel to the substrate are found to dominate under the condition of low deposition rate and collimated beam. On the other hand, grains with high surface energy are found to dominate for high deposition rate and uncollimated sputtered beam, and their dominance disappears at extremely high deposition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, S.R., Tracy, C.J. and Freeman, J.L., Handbook of Multilevel Metallization for Integrated Circuits, Noyes Publications, NJ, 1993.

    Google Scholar 

  2. Cale, T.S., Richards, D.F. and Yang, D., J. Comput. Aided Mat. Design, ( (1999) 000 (this issue).

  3. Greene, J., Sundgren, J., Hultman, L., Petrov, I. and Bergstrom, D., Appl. Phys. Lett., 67 (1995) 2928.

    Article  CAS  Google Scholar 

  4. Dong, L. and Srolovitz, D.J., J. Appl. Phys., 84 (1998) 5261.

    Article  CAS  Google Scholar 

  5. Voter, A., Phys. Rev. Lett., 78 (1997) 3908.

    Article  CAS  Google Scholar 

  6. Smy, T., Tait, R. and Breit, M., IEEE Trans. Comput. Aided Des., 10 (1991) 130.

    Article  Google Scholar 

  7. Baumann, F. and Gilmer, G.H., IEDM Technical Digest 1995, p. 89.

  8. Yang, Y., Johnson, R. and Wadley, H., Acta Mater., 45 (1997) 1445.

    Article  Google Scholar 

  9. Zhou, X., Johnson, R. and Wadley, H., Acta Mater., 45 (1997) 1513.

    Article  CAS  Google Scholar 

  10. Huang, H., Gilmer, G.H. and Diaz de la Rubia, T., J. Appl. Phys., 84 (1998) 3636.

    Article  CAS  Google Scholar 

  11. Gilmer, G.H., Huang, H., Diaz de la Rubia, T. and Roland, C., Comp. Mater. Sci., 12 (1998) 354.

    Article  CAS  Google Scholar 

  12. Gilmer, G.H., Huang, H., Diaz de la Rubia, T., Torre, J.D. and Baumann, F., Thin Solid Films, (1999) in press.

  13. Stumpf, R. and Scheffler, M., Phys. Rev., B53 (1996) 4958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Gilmer, G. Multi-lattice Monte Carlo model of thin films. Journal of Computer-Aided Materials Design 6, 117–127 (1999). https://doi.org/10.1023/A:1008722515055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008722515055

Navigation