Skip to main content
Log in

Toward Sol-Gel-Processed Chemical Sensing Platforms: Effects of Dopant Addition Time on Sensor Performance

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The development of new chemical and biochemical sensing schemes has been a topic of growing interest. Simplicity of preparation and mild processing conditions have made sol-gel-derived composites attractive for many chemical sensing schemes. A portion of our research centers on using sol-gel-processed materials for the development of selective sensors. Over the years we have aimed to characterize the analytical performance of these types of sol-gel-based sensing platforms. In the course of this work we recently discovered that the time (prior to casting) when the sensing chemistry is actually doped into the sol-gel processing solution plays a critical role in a given sensor's analytical performance. In this paper we report on the effects of doping time on the behavior of a model organic dopant (pyrene) sequestered within sol-gel-derived microfiber tips and films. We use O2 as the analyte and determine the sensor sensitivity and temporal response as a function of doping time. We also quantify the local dipolarity of the immediate environment surrounding the average pyrene molecule as a function of doping time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.S. Wolfbeis, Fiber Optic Chemical Sensors and Biosensors (CRC Press, Boca Raton, 1991), vols. 1 and 2.

    Google Scholar 

  2. R.B. Thompson, Topics in Fluorescence Spectroscopy: Probe Design and Chemical Sensing, edited by J.R. Lakowicz (Plenum Press, New York, 1994), chapt. 7, vol. 4.

    Google Scholar 

  3. R.F. Taylor, Protein Immobilization: Fundamentals and Applications (Marcell Dekker, New York, 1991), chapt. 8.

    Google Scholar 

  4. A.M. Buckley and M. Greenblatt, J. Chem. Ed. 71, 599 (1994).

    Google Scholar 

  5. L.L. Hench and J.K. West, Chem. Rev. 90, 33 (1990).

    Google Scholar 

  6. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  7. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink, Anal. Chem. 66, 1120A (1994).

    Google Scholar 

  8. R. Wang, U. Narang, P.N. Prasad, and F.V. Bright, Anal. Chem. 65, 2671 (1993).

    Google Scholar 

  9. J.D. Jordan, R.A. Dunbar, and F.V. Bright, Anal. Chim. Acta 332, 83 (1996).

    Google Scholar 

  10. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, Chem. Mater. 6, 1605 (1994).

    Google Scholar 

  11. U. Narang, M.H. Rahman, J.H. Wang, P.N. Prasad, and F.V. Bright, Anal. Chem. 67, 1935 (1995).

    Google Scholar 

  12. U. Narang, P.N. Prasad, F.V. Bright, K. Ramanathan, N.D. Kumar, B.D. Malhotra, M.N. Kamalasanan, and S. Chandra, Anal. Chem. 66, 3139 (1994).

    Google Scholar 

  13. U. Narang, J.D. Jordan, F.V. Bright, and P.N. Prasad, J. Phys. Chem. 98, 8101 (1994).

    Google Scholar 

  14. U. Narang, R. Wang, P.N. Prasad, and F.V. Bright, J. Phys. Chem. 98, 17 (1994).

    Google Scholar 

  15. J.D. Jordan, R.A. Dunbar, and F.V. Bright, Anal. Chem. 67, 2436 (1995).

    Google Scholar 

  16. R.A. Dunbar, J.D. Jordan, and F.V. Bright, Anal. Chem. 68, 604 (1996).

    Google Scholar 

  17. U. Narang, R. Gvishi, F.V. Bright, and P.N. Prasad, J. Sol-Gel Sci. Tech. 6, 113 (1996).

    Google Scholar 

  18. C.M. Ingersoll and F.V. Bright, CHEMTECH 27, 26 (1997).

    Google Scholar 

  19. H.-Y. Liu, S.C. Switalski, B.K. Coltrain, and P.B. Merkel, Appl. Spectrosc. 46, 1266 (1992).

    Google Scholar 

  20. C. McDonagh, F. Sheridan, T. Butler, and B.D. MacCraith, J. Non-Crystl. Solids 194, 72 (1996).

    Google Scholar 

  21. A.K. McEvoy, C. McDonagh, and B.D. MacCraith, J. Sol-Gel Sci. Technol. 8, 1121 (1997).

    Google Scholar 

  22. J.B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, New York, 1970).

    Google Scholar 

  23. A. Nakajima, Bull. Chem. Soc. Jpn. 44, 3272 (1971).

    Google Scholar 

  24. D.C. Dong and M.A. Winnik, Photochem. Photobiol. 35, 17 (1982).

    Google Scholar 

  25. J. Samuel, Y. Polevaya, M. Ottolenghi, and D. Avnir, Chem. Mater. 6, 1457 (1994).

    Google Scholar 

  26. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1991), chapt. 9.

    Google Scholar 

  27. V.R. Kaufman and D. Avnir, Langmuir 2, 717 (1986).

    Google Scholar 

  28. T. Yamanaka, Y. Takahashi, T. Kitamura, and K. Uchida, Chem. Phys. Lett. 172, 29 (1990).

    Google Scholar 

  29. J.D. Ingle and S.R. Crouch, Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).

    Google Scholar 

  30. A. Messica, A. Greenstein, and A. Katzir, Appl. Opt. 35, 2274 (1996).

    Google Scholar 

  31. M.R. Eftink, Topics in Fluorescence Spectroscopy: Principles, edited by J.R. Lakowicz (Plenum Press, New York, 1991), chapt. 2, vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingersoll, C.M., Bright, F.V. Toward Sol-Gel-Processed Chemical Sensing Platforms: Effects of Dopant Addition Time on Sensor Performance. Journal of Sol-Gel Science and Technology 11, 169–176 (1998). https://doi.org/10.1023/A:1008697514873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008697514873

Navigation