Skip to main content
Log in

Cationic versus Anionic Pillared Layered Substrates: Comparison of the Pillaring Reactions and the Resulting Porosities

  • Published:
Interface Science

Abstract

Cationic clays and Layered Double Hydroxides (LDHs) are both layeredion exchangers, in which a stable (micro)porosity can be induced via apillaring process. For the cationic clays, the [Zr]-pillaring of hectoritecreates a broad micropore distribution with the maximum at 1.42–2.12nm. The [Al]-equivalent exhibits a narrower distribution, with pores between0.71 and 1.06 nm being dominant. In case of the [Zr]-pillared form a surfacearea of 294 m2/g and a micropore volume of 0.118cm3/g have been obtained. The same reaction on the syntheticlaponite clay reveals a much higher surface area (606 m2/g)and porosity (µPV = 0.336 cm3/g). Forlaponite, extra pores are created in the supermicropore-small mesoporeregion due to the preferential edge-to-face and edge-to-edge stacking of itssmaller sized clay layers.

For the pillaring of MgAl- and ZnAl-LDHs with polyoxometalates (POMs),using large organic anions for pre-swelling purposes forms the mostpromising method for the creation of stable pores. It avoids the formationof sidephases, and gives rise to medium(-high) µPVs. Charge density onthe layers forms the key factor, lowering it improves the porositycharacteristics significantly. [Fe(CN)6]-MgAl-LDHs exhibitmore spectacular properties, with surface areas and µPVs exceedingthose of pillared hectorite. A variation in the charge density via theM II/M III ratio optimizes theporosity properties. A M II/M IIIratio of 3.33 results in a SA of 499 m2/g and a µPV of0.177 cc/g. For LDHs, both types of pillars create mainly small micropores,with a diameter smaller than 0.71 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Pinnavaia, Science 220, 365 (1983).

    Google Scholar 

  2. J. Shabtai, United States Patent 4, 188 (1980).

    Google Scholar 

  3. R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves(Academic Press, London, 1978), p. 407.

    Google Scholar 

  4. L. Van Leemput, M.S. Stul, A. Maes, J.B. Uytterhoeven, and A. Cremers, Clays and Clay Minerals 31, 261 (1983).

    Google Scholar 

  5. R.H. Loeppert, M.M. Mortland, and T.J. Pinnavaia, Clays and Clay Minerals 27, 201 (1979).

    Google Scholar 

  6. T. Endo, M.M. Mortland, and T.J. Pinnavaia, Clays and Clay Minerals 28, 105 (1980).

    Google Scholar 

  7. R. Burch, Catalysis Today 2, 297 (1988).

    Google Scholar 

  8. M.P. Atkins, in Pillared Layered Structures: Current Trends and Applications, edited by IV Mitchell (Elsevier, Essex, 1990), p. 159.

    Google Scholar 

  9. R.A. Schoonheydt, J. Van Den Eynde, H. Tubbax, H. Leeman, M. Stuyckens, I. Lenotte, and W.E.E. Stone, Clays and Clay Minerals 41, 598 (1993).

    Google Scholar 

  10. K. Ohtsuka, Y. Hayashi, and M. Suda, Chemistry of Materials 5, 1823 (1993).

    Google Scholar 

  11. J. Sterte, Clays and Clau Minerals 34, 658 (1986).

    Google Scholar 

  12. S. Yamanaka and G.W. Brindley, Clays and Clay Minerals 26, 21 (1978).

    Google Scholar 

  13. T.J. Pinnavaia, M.S. Zhou, and S.D. Landau, Journal of the American Chemical Society 107, 4783 (1985).

    Google Scholar 

  14. E.G. Rightor, M.S. Zhou, and T.J. Pinnavaia, Journal of Catalysis 130, 29 (1991).

    Google Scholar 

  15. N. Maes, H.-Y. Zhu, and E.F. Vansant, Journal of Porous Materials 2, 97 (1995).

    Google Scholar 

  16. H.-Y. Zhu, N. Maes, and E.F. Vansant, in Surface Science and Catalysis, edited by J. Rouquerol, F. Rodriguez-Reinoso, K.S.W. Sing, and K.K. Unger (Elsevier, Amsterdam, 1994), Vol. 87, p. 457.

    Google Scholar 

  17. R.A. Schoonheydt, H. Leeman, A. Scorpion, I. Lenotte, and P. Grobet, Clays and Clay Minerals 42, 518 (1994).

    Google Scholar 

  18. T.J. Pinnavaia, M.S. Tzou, S.D. Landau, and R.H. Raythatha, Journal of Molecular Catalysis 27, 195 (1984).

    Google Scholar 

  19. M.A. Drezdon, Inorganic Chemistry 27, 4628–4632 (1988).

    Google Scholar 

  20. T. Sato, H. Fujita, T. Endo, and M. Shimada, React. of Solids 5, 219 (1988).

    Google Scholar 

  21. T. Kwon and T. Pinnavaia, Chemistry of Materials 1(4), 381–383 (1989).

    Google Scholar 

  22. J. Wang, Y. Tian, R.-C. Wang, and A. Clearfield, Chem. Mater. 4, 1276–1282 (1992).

    Google Scholar 

  23. M.-A. Ulibarri, F.M. Labajos, V. Rives, R. Trujillano, W. Kagunya, and W. Jones, Inorganic Chemistry 33(12) 2592–2599 (1994).

    Google Scholar 

  24. T. Kwon and T. Pinnavaia, Journal of Molecular Catalysis 74, 23–33 (1992).

    Google Scholar 

  25. T. Kwon, G.A. Tsigdinos, and T. Pinnavaia, J. Am. Chem. Soc. 110, 3653–3654 (1988).

    Google Scholar 

  26. E.D. Dimotakis and T.J. Pinnavaia, Inorganic Chemistry 29(13), 2393–2394 (1990).

    Google Scholar 

  27. E. Narita, P. Kaviratna, and T. Pinnavaia, Chemistry Letters 805–808 (1991).

  28. F. Trifiro and A. Vaccari, in Comprehensive Supramolecular Chemistry, edited by J.L. Atwood, D.D. MacNicol, J.E.D. Davies, and F. Vögtle (Pergamon Press, Oxford, 1995), Vol. 7, Chapter 10.

    Google Scholar 

  29. F.A.P. Cavalcanti, A. Schutz, and P. Biloen, in Preparation of Catalysts IV, edited by B. Delmon, P. Grange, P.A. Jacobs, and G. Poncelet (Elsevier, Amsterdam, 1987).

    Google Scholar 

  30. H.C.B. Hansen and C.B. Koch, Clays and Clay Minerals 42(2), 170–179 (1994).

    Google Scholar 

  31. S. Kikkawa and M. Koizumi, Mat. Res Bull. 17, 191 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijs, H., Cool, P. & Vansant, E. Cationic versus Anionic Pillared Layered Substrates: Comparison of the Pillaring Reactions and the Resulting Porosities. Interface Science 5, 83–94 (1997). https://doi.org/10.1023/A:1008659822144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008659822144

Navigation