Skip to main content
Log in

Factors that affect the thermal stability and properties of Zr-porous clay heterostructures

In situ studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New zirconium-porous clay heterostructures (PCHs) were prepared using zirconium-tetramer-intercalated clay mineral as precursors and a subsequent reaction with alkylamine molecules and a silica source, such as tetraethyl orthosilicate. The organic molecules were removed by calcinations at temperatures above 550 °C. The precursors and resulting materials were systematically characterized using different techniques: XRD, XRF, 29Si MAS NMR, N2 adsorption, and TG-DTG. The thermal stability of the zirconium precursor and porous clay heterostructure was reported for the first time using in situ XRD high temperature. The zirconium content in the PCHs was tuned using the starting precursors with different zirconia percentages, and its presence improved the thermal stability, microtextural properties, and acidity of the PCH materials compared to the conventional PCH materials. The length of the alkyl amine chains used also affected the previously mentioned properties. A higher surface area of 950 m2 g−1 and pore volume of 0.801 cc g−1 were obtained using dodecylamine molecules and Zr-intercalated clay with a starting ratio of Zr (mole) to grams of clay of 6. The zirconium-porous clay heterostructures were stable up to 650 °C, with a total acidity concentration of 0.993 mol g−1 of PCH, in addition to strong Brönsted and Lewis acid sites, which were detected at 500 °C in vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46:7548–56.

    Article  CAS  Google Scholar 

  2. Bhattacharyya S, Lelong G, Saboungi ML. Recent progress in the synthesis and selected applications of MCM-41: a short review. J Exp Nanosci. 2006;1:375–95.

    Article  CAS  Google Scholar 

  3. Raman NK, Anderson MT, Brinker CT. Template-based approaches to the preparation of nanoporous silicas. Chem Mater. 1996;8:1682–701.

    Article  CAS  Google Scholar 

  4. Galarneau A, Barodawalla A, Pinnavaia TJ. Porous clay heterostructures formed by gallery-templated synthesis. Nature. 1994;374:529–31.

    Article  Google Scholar 

  5. Pires J, Pinto M, Estella J, Echeverría JC. Characterization of the hydrophobicity of mesoporous silicas and clays with silica pillars by water adsorption and DRIFT. J Colloid Interface Sci. 2008;317:206–13.

    Article  CAS  Google Scholar 

  6. Chmielarz L, Kuśtrowski P, Drozdek M, Dziembaj R, Cool P, Vansant EF. Selective catalytic oxidation of ammonia into nitrogen over PCH modified with copper and iron species. Catal Today. 2006;114:319–25.

    Article  CAS  Google Scholar 

  7. Arellano-Cárdenas S, Gallardo-Velázquez T, Osorio-Revilla G, López-Cortez M. Preparation of a porous clay heterostructure and study of its adsorption capacity of phenol and chlorinated phenols from aqueous solutions. Water Environ Res. 2008;80:60–7.

    Article  Google Scholar 

  8. Srithammaraj K, Magaraphan R, Manuspiya H. Modified porous clay heterostructures by organic–inorganic hybrids for nanocomposite ethylene scavenging/sensor packaging film. Packag Technol Sci. 2012;25:63–72.

    Article  CAS  Google Scholar 

  9. Gârea SA, Mihai AI, Ghebaur A, Nistor C, Sârbu A. Porous clay heterostructures: a new inorganic host for 5-fluorouracil encapsulation. Int J Pharm. 2015;491:299–309.

    Article  Google Scholar 

  10. Kooli F, Hian PC, Weirong Q, Alshahateet SF, Chen F. Effect of the acid activated clays on the properties of porous clay heterostructures. J Porous Mater. 2006;13:319–24.

    Article  CAS  Google Scholar 

  11. Chmielarz L, Piwowarska Z, Kuśtrowski P, Gil B, Adamski A, Dudek B, Michalik M. Porous clay heterostructures (PCHs) intercalated with silica-titania pillars and modified with transition metals as catalysts for the DeNOx process. Appl Catal B Environ. 2009;91:449–59.

    Article  CAS  Google Scholar 

  12. Polverejan M, Liu Y, Pinnavaia TJ. Aluminated derivatives of porous clay heterostructures (PCH) assembled from synthetic saponite clay: properties as supermicroporous to small mesoporous acid catalysts. Chem Mater. 2002;14:2283–8.

    Article  CAS  Google Scholar 

  13. Pinto ML, Saini VK, Guil JM, Pires J. Introduction of aluminum to porous clay heterostructures to modify the adsorption properties. Appl Clay Sci. 2014;101:497–502.

    Article  CAS  Google Scholar 

  14. Chmielarz L, Gil B, Kustrowski P, Piwowarska Z, Dudek B, Michalik M. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica–titania pillars—synthesis and characterization. J Solid State Chem. 2009;182:1094–104.

    Article  CAS  Google Scholar 

  15. Cecilia JA, García-Sancho C, Franco F. Montmorillonite based porous clay heterostructures: influence of Zr in the structure and acidic properties. Microporous Mesoporous Mater. 2013;176:95–102.

    Article  CAS  Google Scholar 

  16. Yamaguchi T. Application of ZrO2 as a catalyst and a catalyst support. Catal Today. 1994;20:199–217.

    Article  CAS  Google Scholar 

  17. Ohtsuka K. Preparation and properties of two-dimensional microporous pillared interlayered solids. Chem Mater. 1997;9:2039–50.

    Article  CAS  Google Scholar 

  18. Kooli F, Jones W. Systematic comparison of a saponite clay pillared with Al and Zr metal oxides. Chem Mater. 1997;9:2913–20.

    Article  CAS  Google Scholar 

  19. Pinto ML, Marques J, Pires J. Porous clay heterostructures with zirconium for the separation of hydrocarbon mixtures. Sep Purif Technol. 2012;98:337–43.

    Article  CAS  Google Scholar 

  20. Kooli F. Porous clay heterostructures (PCHs) from Al13-intercalated and Al13-pillared montmorillonites: properties and heptane hydro-isomerization catalytic activity. Microporous Mesoporous Mater. 2014;184:184–92.

    Article  CAS  Google Scholar 

  21. Kooli F, Yan L, Hbaieb K, Al-Faze R. Characterization and catalytic properties of porous clay heterostructures from zirconium intercalated clay and its pillared derivatives. Microporous Mesoporous Mater. 2016;226:482–92.

    Article  CAS  Google Scholar 

  22. Kooli F, Sim TH, Jian D, Yan L, Alshahateet SF, Martin C, Rivers V. Zirconium nitrate solution as pillaring agent of montmorillonites clays. Clay Sci. 2006;12(2):301–5.

    CAS  Google Scholar 

  23. Awate SV, Waghmode SB, Patil KR, Agashe MS, Joshi PN. Influence of preparation parameters on characterization of zirconia-pillared clay using ultrasonic technique and its catalytic performance in phenol hydroxylation reaction. Korean J Chem Eng. 2001;18:257–62.

    Article  CAS  Google Scholar 

  24. Toranzo R, Vicente MV, Banares-Munoz MA, Gandı LM, Gil A. Pillaring of saponite with zirconium oligomers. Microporous Mesoporous Mater. 1998;173:173–88.

    Article  Google Scholar 

  25. Kooli F, Jones W. Al and Zr pillared acid-activated saponite clays: characterization and properties. J Mater Chem. 1998;8:2119–24.

    Article  CAS  Google Scholar 

  26. Farfan EM, Sham E, Grange P. Pillared clay: preparation and characterization of zirconium pillared montmorillonite. Catal Today. 1992;15:515–26.

    Article  Google Scholar 

  27. Cool P, Vansant EF. Preparation and characterization of zirconium pillared laponite and hectorite. Microporous Mater. 1996;6:27–36.

    Article  CAS  Google Scholar 

  28. Bahranowski K, Włodarczyk W, Wisła-Walsh E, Gaweł A, Matusik J, Klimek A, Gil B, Michalik-Zym A, Dula R, Socha RP, Serwicka EM. [Ti, Zr]-pillared montmorillonite—a new quality with respect to Ti- and Zr-pillared clays. Microporous Mesoporous Mater. 2015;202:155–64.

    Article  CAS  Google Scholar 

  29. Ursu AV, Jinescu G, Gros F, Nistor ID, Miron ND, Lisa G, Silion M, Djelveh G, Azzouz A. Thermal and chemical stability of Romanian bentonite. J Therm Anal Calorim. 2011;106:965–71.

    Article  CAS  Google Scholar 

  30. Sun Kou MR, Mendioroz S, Guijarro MI. A thermal study of Zr-pillared montmorillonite. Themochim Acta. 1998;323:145–57.

    Article  CAS  Google Scholar 

  31. Kooli F, Liu Y, Tan SX, Zheng J. Organoclays from alkaline-treated acid-activated clays. J Therm Anal Calorim. 2014;115:1465–75.

    Article  CAS  Google Scholar 

  32. Zhu J, Shen W, Ma Y, Zhou Q, Yuan P, Liu D, He H. The influence of alkyl chain length on surfactant distribution within organo-montmorillonites and their thermal stability. J. Thermal Anal Calorim. 2016;109:301–9.

    Article  Google Scholar 

  33. He H, Duchet J, Galy J, Gerard JF. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. J Colloid Interface Sci. 2005;288:171–6.

    Article  CAS  Google Scholar 

  34. Belver C, Aranda P, Martin-Luengo MA, Ruiz-Hitzky E. New silica/alumina–clay heterostructures: properties as acid catalysts. Microporous Mesoporous Mater. 2012;147:157–66.

    Article  Google Scholar 

  35. Wang F, Nimmo SL, Cao B, Mao C. Oxide formation on biological nanostructures via a structure-directing agent: towards an understanding of precise transcription. Chem Sci. 2012;3:2639–45.

    Article  CAS  Google Scholar 

  36. Zapata PA, Belverb C, Quijada R, Aranda P, Ruiz-Hitzky E. Silica/clay organo-heterostructures to promote polyethylene–clay nanocomposites by in situ polymerization. Appl Catal A Gen. 2013;453:142–50.

    Article  CAS  Google Scholar 

  37. Zimowska M, Pálková H, Madejová J, Dula R, Pamin K, Olejniczak Z, Gil B, Serwicka EM. Laponite-derived porous clay heterostructures: III. The effect of alumination. Microporous Mesoporous Mater. 2013;175:67–75.

    Article  CAS  Google Scholar 

  38. Kooli F. Pillared montmorillonites from unusual antiperspirant aqueous solutions: characterization and catalytic tests. Microporous Mesoporous Mater. 2013;167:228–36.

    Article  CAS  Google Scholar 

  39. Benjelloun M, Cool P, Linssen T, Vansant EF. Acidic porous clay heterostructures: study of their cation exchange capacity. Microporous Mesoporous Mater. 2001;49:83–94.

    Article  CAS  Google Scholar 

  40. Pichowicz M. Mokaya. R. Porous clay heterostructures with enhanced acidity obtained from acid-activated clays. Chem Commun. 2001;20:2100–1.

    Article  Google Scholar 

  41. Wang Y, Lin X, Wen K, Zhu J, He H. Effects of organic templates on the structural properties of porous clay heterostructures: a non-micellar template model for porous structure. J Porous Mater. 2015;22:219–28.

    Article  CAS  Google Scholar 

  42. Breen C. Thermogravimetric study of the desorption of cyclohexylamine and pyridine from an acid-treated Wyoming bentonite. Clay Miner. 1991;26:473–86.

    Article  CAS  Google Scholar 

  43. Bagshaw SA, Cooney RP. FTIR surface site analysis of pillared clays using pyridine probe species. Chem Mater. 1993;5:1101–9.

    Article  CAS  Google Scholar 

  44. Lambert JF, Poncelet G. Acidity in pillared clays: origin and catalytic manifestations. Top Catal. 1997;11:43–56.

    Article  Google Scholar 

  45. Wei L, Tang T, Huang B. Novel acidic porous clay heterostructure with highly ordered organic–inorganic hybrid structure: one-pot synthesis of mesoporous organosilica in the galleries of clay. Microporous Mesoporous Mater. 2004;67:175–9.

    Article  CAS  Google Scholar 

  46. Cavani F, Guidetti S, Marinelli L, Piccinini M, Chedini E, Signoretto M. The control of selectivity in gas-phase glycerol dehydration to acrolein catalysed by sulfated zirconia. Appl Catal B. 2010;100:197–204.

    Article  CAS  Google Scholar 

  47. Carriazo D, Domingo C, Martin C, Rives V. PMo or PW heteropoly acids supported on MCM-41 silica nanoparticles: characterisation and FT-IR study of the adsorption of 2-butanol. J Soild State Chem. 2008;181:2046–57.

    Article  CAS  Google Scholar 

  48. Ma Y, Sun H, Sun Q, Zhang H. Zirconium-doped porous magadiite heterostructures upon 2D intragallery in situ hydrolysis–condensation–polymerization strategy for liquid-phase benzoylation. RSC Adv. 2015;5:67853–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Kooli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (PDF 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kooli, F., Liu, Y., Hbaieb, K. et al. Factors that affect the thermal stability and properties of Zr-porous clay heterostructures. J Therm Anal Calorim 126, 1143–1155 (2016). https://doi.org/10.1007/s10973-016-5825-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5825-8

Keywords

Navigation