Skip to main content
Log in

13C-NMR Study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Applications of nuclear magnetic resonance (NMR) to study a variety of physiological and biochemical aspects of bacteria with a role in the sulfur cycle are reviewed. Then, a case-study of high resolution13 C-NMR spectroscopy on sludges from bioreactors used for treating sulfate and sulfide rich wastewaters is presented.13 C-NMR was used to study the effect of sulfate and butyrate on propionate conversion by mesophilic anaerobic (methanogenic and sulfate reducing) granular sludge and microaerobic (sulfide oxidizing) flocculant sludge. In the presence of sulfate, propionate was degraded via the randomising pathway in all sludge types investigated. This was evidenced by scrambling of [3-13C]propionate into [2-13C]propionate and the formation of acetate equally labeled in the C1 and C2 position. In the absence of sulfate, [3-13C]propionate scrambled to a lesser extend without being degraded further. Anaerobic sludges converted [2,3-13C]propionate partly into the higher fatty acid 2-methyl[2,3-13C]butyrate during the simultaneous degradation of [2,3-13C]propionate and butyrate. [4,5-13C]valerate was also formed in the methanogenic sludges. Up to 10% of the propionate present was converted via these alternative degradation routes. Labeled butyrate was not detected in the incubations, suggesting that reductive carboxylation of propionate does not occur in the sludges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blacklegde MJ, Guerlesquin F & Marion D (1996) Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibiro vulgaris with the class I cytochrome c family. Prot. Struct. Funct. Genet. 24: 178–194

    Google Scholar 

  • Botuyan MV, Toy Palmer A, Chung J, Blake RCII, Beroza P, Case DA & Dyson HJ (1996) NMR solution structure of Cu(I) rusticyanin from Thiobacillus ferrooxidans: structural basis for the extreme acid stability and redox potential. J. Molecular Biol. 263: 752–767

    Google Scholar 

  • Claassen PAM, Dijkema C, Visser J & Zehnder AJB (1986) In vivo 13C NMR analysis of acetate metabolism in Thiobacillus versutus under denitrifying conditions. Arch. Microbiol. 146: 227–232

    Google Scholar 

  • Dong X, Plugge CM & Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60: 2834–2838

    Google Scholar 

  • Fareleira P, LeGall J, Xavier AV & Santos H (1997) Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions. J. Bacteriol. 179: 3972–3980

    Google Scholar 

  • Galinski EA & Oren A (1991) Isolation and structure determination of a novel compatible solute from the moderately halophilic purple sulfur bacterium Ectothiorhodospira marismortui. Eur. J Biochem. 198: 593–598

    Google Scholar 

  • Gottschalk G (1985) Bacterial metabolism, 2nd ed. Springer-Verlag, New York

    Google Scholar 

  • Hensgens CMH, Santos H, Zhang C, Kruizinga WH & Hansen TA (1996) Electron-dense granules in Desulfovibrio gigas do not consist of inorganic triphosphate but of a glucose pentakis(diphosphate). Eur. J Biochem. 242: 327–331

    Google Scholar 

  • Higgins TP, Hewlins MJE & White GF (1996) A 13C NMR study of the mechanism of bacterial metabolism of monomethyl sulfate. Eur. J Biochem. 236: 6203–625

    Google Scholar 

  • Houwen FP, Dijkema C, Stams AJM & Zehnder AJB (1991) Propionate metabolism in anaerobic bacteria; determination of carboxylation reactions with 13C-NMR spectroscopy. Biochim. Biophys. Acta 1056: 126–132

    Google Scholar 

  • Janssen AJH, Ma SC, Lens P & Lettinga G (1997) Performance of a sulphide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotech. Bioeng. 53: 32–40

    Google Scholar 

  • Kaufman J, Spicer LD & Siegel LM (1993) Proton NMR of Escherichia coli sulfite reductase: the unligated hemeprotein subunit. Biochemistry 32: 2853–2867

    Google Scholar 

  • Kremer DR & Hansen TA (1988) Pathway of propionate degradation in Desulfobulbus propionicus. FEMS Microbiol. Lett. 49: 273–277

    Google Scholar 

  • Kroder M, Kroneck PMH & Cypionka H (1991) Determination of the transmembrane proton gradient in the anaerobic bacterium Desulfovibrio desulfuricans by 31P NMR. Arch. Microbiol. 156: 145–147

    Google Scholar 

  • Lens P, O'Flaherty V, Dijkema C, Stams A & Colleran E (1996) Propionate degradation bymesophilic anaerobic sludge: degradation pathways and effects of other volatile fatty acids. J. Ferment. Bioeng. 82: 387–391

    Google Scholar 

  • Lens P, Hulshoff Pol L, Lettinga G & Van As H (1997) Use of 1H NMR to study transport processes in sulfidogenic granular sludge. Wat. Sci. Technol. 36: 157–163

    Google Scholar 

  • Lens PNL & Hemminga MA (1998) Nuclear Magnetic Resonance (NMR) in environmental engineering: principles and applications. Biodegradation: in press

  • Matthew JC, Timkovich R, Liu MY & LeGall J (1995) Siroamide: a prosthetic group isolated from sulfite reductases in the genus Desulfovibrio. Biochemistry 34: 5248–5251

    Google Scholar 

  • Nicolay K, van Gemerden H, Hellingwerf KJ, konings WN & Kaptein R (1983) In vivo 31P and 13C nuclear magnetic resonance studies of acetate metabolism in Chromatium vinosum. J. Bacteriol. 155: 634–642

    Google Scholar 

  • Omil F, Lens P, Hulshoff Pol L & Lettinga G (1996) Effect of upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Proc. Biochem. 31: 699–710

    Google Scholar 

  • Omil F, Lens P, Hulshoff Pol L & Lettinga G (1997) Characterization of biomass from a sulphidogenic, volatile fatty acid-degrading granular sludge reactor. Enz. Microb. Technol. 20: 229–236

    Google Scholar 

  • Oude Elferink SJWH, Lens PNL, Dijkema C & Stams AJM (1996) Isomerization of butyrate to isobutyrate by Desulforhabdus amnigenus. FEMS Microbiol. Lett. 142: 237–241.

    Google Scholar 

  • Santos H, Fareleira P, Pedregal C, LeGall J & Xavier AV (1991) In vivo 31P-NM-R studies of Desulfovibrio species. Eur. J Biochem. 201: 283–287

    Google Scholar 

  • Santos H, Fareleira P, Xavier AV, Chen L, Liu MY & LeGall J (1993) Aerobic metabolism of carbon reserves by the 'obligate anaerobe' Desulfovibrio gigas. Biochem. Biophys. Res. Commun. 195: 551–557

    Google Scholar 

  • Santos H, Fareleira P, LeGall J & Xavier AV (1994) In vivo nuclear magnetic resonance in study of physiology of sulfate-reducing bacteria. Meth. Enzymol. 243: 543–558

    Google Scholar 

  • Schaefer S, Gotz M, Eisenreich W, Bachier A & Fuchs G (1989) 13C NMR study of autotrophic carbon dioxide fixation in Thermoproteus neutrophilus. Eur. J Biochem. 184: 151–156

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280

    Google Scholar 

  • Schoberth SM, Bubb WA, Chapman BE & Kuchel PW (1993) Detection of trace ethanol production from furfural by Desulfovibrio furfuralis using proton-NMR. J. Microbiol. Meth. 17: 85–90

    Google Scholar 

  • Smith DP & McCarty PL (1989) Reduced product formation following perturbation of ethanol-and propionate-fed methanogenic CSTRs. Biotechnol. Bioeng. 34: 885–895

    Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Weenk GH & Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch. Microbiol. 139: 167

    Google Scholar 

  • Strauss G, Eisenreich W, Bacher A & Fuchs G (1992) 13C NMR study of autotrophic carbon dioxide fixation pathways in the sulfur-reducing Archaebacterium Thermoproteus neutrophilus and in the phototrophic Eubacterium Chloroflexus aurantiacus. Eur. J Biochem. 205: 853–866

    Google Scholar 

  • Tai C-H, Nablabolu SR, Jacobson TM, Minter DE & Cook PF (1993) Kinetic mechanisms of the A and B isozymes of Oacetylserine sulfhydrylase from Salmonella typhimurium LT-2 using the natural and alternative reactants. Biochemistry 32: 6433–6442

    Google Scholar 

  • Thauer RK, Decker K & Jungermann K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180

    Google Scholar 

  • Tholozan JL, Samain E, Grivet JP, Moletta R, Dubourguier HC & Albagnac G (1988) Reductive carboxylation of propionate to butyrate in methanogenic ecosystems. Appl. Environ. Microbiol. 54: 441–445

    Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH & Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J. Industrial. Microbiol. 14: 329–336

    Google Scholar 

  • Turner DL, Salgueiro CA, Catarino T, LeGall J & Xavier AV (1996) NMR studies of cooperativity in the tetrahaem cytochrome c-3 from Desulfovibrio vulgaris. Eur. J Biochem. 241: 723–731

    Google Scholar 

  • Ubbink M, Puhl M, Van Der Oost J, Berg A & Canters GW (1996) NMR assignments and relaxation studies of Thiobacillus versutus ferrocytochrome c-550 indicate the presence of a highly mobile 13-residues long C-terminal tail. Protein Science 5: 2494–2505

    Google Scholar 

  • Van de Meent JE, Kobayashi M, Erkelens C, Van Veelen PA, Otte SCM, Inoue K, Watanabe T & Amesz J (1992) The nature of the primary electron acceptor in green sulfur bacteria. Biochim. Biophys. Acta 1102: 371–378

    Google Scholar 

  • Welsh DT & Herbert RA (1993) Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotics stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol. Ecol. 13: 145–150

    Google Scholar 

  • Wu W-M, Thiele JH, Jain MK & Zeikus JG (1993) Metabolic properties and kinetics of methanogenic granules. Appl. Microbiol. Biotechnol. 39: 804–811

    Google Scholar 

  • Wu W-M, Jain MK & Zeikus JG (1994) Anaerobic degradation of normal-and branched-chain fatty acids with four or more carbon atoms to methane by a syntrophic methanogenic triculture. Appl. Environ. Microbiol. 60: 2220–2226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J.M. Stams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lens, P., Dijkema, C. & Stams, A. 13C-NMR Study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Biodegradation 9, 179–186 (1998). https://doi.org/10.1023/A:1008395724938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008395724938

Navigation