Skip to main content
Log in

SOI Technologies Overview for Low-Power Low-Voltage Radio-Frequency Applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Thanks to their structure, the SOI technologies present several intrinsic advantages for analog and RF applications. Indeed, as it is well established now, these technologies allow the reduction of the power consumption at a given operating frequency. Moreover, the high-insulating properties of SOI substrates, in particular when high resistivity substrate is used, make that these technologies are perfect candidates for mixed-signal applications. In the present paper, we will discuss the performances of the SOI technologies in radio-frequency range. First of all, the high-frequency behavior of SOI substrates, thanks to the characterization of transmission lines, will be shown. The impact of the SOI substrate resistivity on the performances of passive components will also be analyzed. Then, an overview of RF performances of SOI MOSFETs for two different architectures, fully- and partially-depleted, will be achieved and compared to the bulk ones. Finally, the influence of some specific parasitic effects, such as the kink effect, the self-heating effect and the kink-related excess noise, on the RF performances of SOI devices will be studied, thanks to a specific high-frequency characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Taur, S. Wind, Y. J. Mii, Y. Lii, D. Moy, K. A. Jenkins, C. L. Chen, P. J. Coane, D. Klaus, J. Bucchignano, M. Rosenfield, M. G. R. Thomson, and M. Polcari, “High performance 0.1 mm CMOS devices with 1.5V power supply,” in Proc. IEDM Tech. Dig., p. 127, December 93.

  2. A. K. Agarwal, M. C. Driver, M. H. Hanes, H. M. Hodgood, P. G. McMullin, H. C. Nathanson, T. W. O'Keeffe, T. J. Smith, J. R. Szedon, and R. N. Thomas, “MICROX2 Ð An advanced silicon technology for microwave circuits up to X-band,” in Proc. IEDM Tech. Dig., pp. 687-690, 1991.

  3. D. Eggert, P. Huebler, A. Huerrich, H. Kuerck, W. Budde, and M. Vorwerk, “A SOI-RF-CMOS technology on high resistivity SIMOX substrates for microwave applications to 5 GHz.” IEEE Trans. on Electron Devices 44(11), pp. 1981-1989, 1997.

    Google Scholar 

  4. M. Harada, C. Yamaguchi, and T. Tsuchiya, “Investigation of a multigigahertz MOSFET ampliÆer with an on-chip inductor fabricated on a SIMOX wafer.” IEEE Trans. Electron Devices 45(1), pp. 173-177, 1998.

    Google Scholar 

  5. A. Viviani, J.-P. Raskin, D. Flandre, J.-P. Colinge, and D. Vanhoeneker, “Extended study of crosstalk in SOISIMOX substrates,” in Proc. IEDM Tech. Dig., pp. 713-716, 1995.

  6. J. P. Raskin, A. Viviani, D. Flandre, and J. P. Colinge, “Substrate crosstalk reduction using SOI technology.” IEEE Trans. Electron Devices 44(12), pp. 2252-2261, 1997.

    Google Scholar 

  7. D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise ampliÆer.” IEEE Solid-State Circuits 32(5), pp. 745-759, 1997.

    Google Scholar 

  8. J. Cranincks and M. Steyeart, “Low-noise voltge-controlled oscillators using enhanced LC-tanks.” IEEE Trans. Circuits and Systems 42(12), pp. 794-804, 1995.

    Google Scholar 

  9. J. N. Burghartz, D. C. Edelstein, M. Soyuer, H. A. Ainspan, and K. A. Jenkins, “RF circuit design aspects of spiral inductors on silicon.” IEEE. Solid-State Circuits, 33(12), pp. 2028-2033, 1998.

    Google Scholar 

  10. J. Lescot, O. Rozeau, J. Boussey, J. Jomaah, and F. Ndagijimana, “Coplanar transmission lines on SOI technologies for RF applications: modeling and experiments,” in Proc. ESSDERC'98, 1998.

  11. K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, “High Q-inductors for wireless applications in a complementary silicon bipolar process.” IEEE. Solid-State Circuits 31(1), pp. 4-8, 1996.

    Google Scholar 

  12. M. Soyuer, J. N. Burghartz, K. A. Jenkins, S. Pannapalli, J. F. Ewen, and W. E. Pence, “Multilevel monolithic inductor in silicon technology.” Electronics Letters 32(5), pp. 359-360, 1995.

    Google Scholar 

  13. J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Microwave inductors and capacitors in standard multilevel interconnect silicon technology.” IEEE Trans. Microwave Theory and Techniques, 44(1), pp. 100-104, 1996.

    Google Scholar 

  14. J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Integrated RF and microwave components in BiCMOS technology.” IEEE Trans. Electron Devices 43(9), pp. 1559-1570, 1996.

    Google Scholar 

  15. M. Park, S. Lee, H. K. Hu, J. G. Koo, and K. S. Nam, “High QCMOS-compatible microwave inductors using double-metal interconnection silicon technology.” IEEE Microwave and Guided Wave Letters 7(2), pp. 45-47, 1997.

    Google Scholar 

  16. M. Park, C. S. Kim, J. M. Park, H. K. Yu, and K. S. NaICs, “High Q microwave inductors in CMOS double-metal technology and its substrate bias effects for 2 GHz RF applications,” in Proc. IEDM Tech. Dig., pp. 59-62, 1997.

  17. F. Mermyei, F. Darrer, M. Pardoen, and A. Sibrai, “Reducing the substrate losses of RF integrated inductors.” IEEE Microwave and Guided Wave Letters 8(9), pp. 300-301, 1998.

    Google Scholar 

  18. C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RFICs.” IEEE Journal of Solid-State Circuits 33(5), pp. 743-751, 1998.

    Google Scholar 

  19. J. M. Lopez, J. Samitier, C. Cane, and P. Losantos, “Improvement of the quality factor of RF integration inductors by layout optimization,” in Proc. 1998 IEEE Radio Frequency Integrated Circuits Symp., pp. 169-172, 1998.

  20. L. E. Larson, “Integrated circuit technology options for RFICs-Present status and future directions.” IEEE. Solid-State Circuits 33(3), pp. 387-399, 1998.

    Google Scholar 

  21. R. A. Johnson, C. E. Chang, P. M. Asbeck, M. E. Wood, G. A. Garcia, and I. Lagnado, “Comparison of microwave inductors fabricated on silicon-on-sapphire and bulk silicon.” IEEE Microwave and Guided Wave Letters 6(9), pp. 323-325, 1996.

    Google Scholar 

  22. M. Stuber, M.Megahed, J.J. Lee, T. Kobayashi, and H. Domyo, “SOI CMOS with high-performance passive components for analog, RF, and mixed signal design,” in Proc. 1998 IEEE Int. SOI Conf., pp. 99-100, 1998.

  23. C. Raynaud, O. Faynot, J. L. Pelloie, S. Deleonibus, D. Vanhoenacker, R. Gillon, J. Sevenhans, E. Compagne, G. Fletcher, and E. Mackowiak, “Fully-depleted 0.25 mm SOI devices for low power RF mixed analog-digital circuits,” in Proc. IEEE 1998 Int. SOI Conf., pp. 67-68, 1998.

  24. O. Rozeau, J. Jomaah, J. Boussey, C. Raynaud, J.-L. Pelloie and F. Balestra, “Comparison between fully-and partially-depleted SOI MOSFETs for low-power radio-frequency applications,” in Proc. 1999 Int. SOI Conf., 1999.

  25. T. Ohguro, H. Naruse, H. Sugaya, E. Morifuji, S. Nakamura, T. Yoshitomi, T. Norimoto, S. Momose, Y. Katsumata, and H. Iwai», “0.18 mm low/low power RF CMOS with zero Vth analog MOSFETs made by undoped epitaxial channel technique,” in Proc. IEDM Tech. Dig., pp. 837-840, 1997.

  26. D. Sinitsky, R. Tu, C. Liang, M. Chan, J. Bokor, and C. Hu, Low-Power Low-Voltage Radio-Frequency Applications 111 “AC output conductance of SOI MOSFETs and impact on analog applications.” IEEE Electron Device Letters 18(2), pp. 36-38, 1999.

    Google Scholar 

  27. R. Howes and W. Rebman-White, “A small-signal model for the frequency-dependent drain admittance in Øoating-substrate MOSFETs.” IEEE. Solid-State Circuits 27(8), pp. 1186-1193, 1992.

    Google Scholar 

  28. W. Redman-White, “Some dos and don'ts for analog design in SOI CMOS,” in Short Course 1999. IEEE Int. SOI Conf., 1999.

  29. B. M. Tenbroek, W. Rebman-White, M. J. Uren, M. S. L. Lee, and M. C. L. Ward, “IdentiÆcation of thermal and electrical time constants in SOI MOSFETS from small signal measurements,” in Proc. ESSDERC' 93, pp. 189-192, 1993.

  30. B. M. Tenbroek, “Characterisation and parameter extraction of silicon-on-insulator MOSFETs for analog circuit modelling.” Thesis of University of Southampton, 1997.

  31. D. J. Roulston, 1990. Bipolar Semiconductor Devices. McGraw-Hill Publishing Company. 1990.

  32. F. Faccio, F. AnghinolÆ, E. H. M. Heijne, P. Jarron, and S. Cristoloveanu, “Noise contribution of the body resistance in partially-depleted SOI MOSFETs.” IEEE Trans. Electron Devices 45(5), pp. 1033-1038, 1998.

    Google Scholar 

  33. W. Jin, P. C. H. Chan, S. K. H. Samuel, K. H. Fung, and P. K. Ko, “A physically-based low-frequency noise model for NFD SOI MOSFETs,” in Proc. 1998 IEEE Int. SOI Conf., pp. 23-24, 1998.

  34. Y.-C. Tseng, W. M. Huang, C. Hwang, P. Welch, and J. C. S. Woo, “Temperature dependence of AC Øoating body effects in PD SOI nMOS,” in Proc. 1999 IEEE Int. SOI Conf., pp. 26-27, 1999.

  35. Y.-C. Tseng, W. M. Huang, V. Ilderem, and J. C. S. Woo, “Floating body induced pre-kink excess low-frequency noise in submicron SOI CMOSFET technology.” IEEE Electron Device Letters 20(9), pp. 484-486, 1999.

    Google Scholar 

  36. S. Haendler, J. Jomaah, F. Balestra, J. L. Pelloie, C. Raynaud, and J. Boussey, “Thorough investigation of kink-related excess noise in deep submicron SOI N-MOSFETs on Unibond Substrate,” in Proc. 1999 Int. Conf. Solid State Devices, Materials, SSDM'99, 1999.

  37. O. Rozeau, J. Jomaah, J. Boussey, and C. Raynaud, “Impact of Øoating-body effect on RF performances of SOI MOSFET,” in Proc. ESSDERC'99, 1999.

  38. A. A. Abidi, 1997. “Analog circuit design-RF analog digital converters, sensor and actuator interfaces.” Low Noise Oscillators, PLLs and Synthesizers Kluwer Academic Publishers, Boston, 1997.

    Google Scholar 

  39. D. A. Dallman and K. Shenai, “Scaling constraints imposed by self-heating in submicron SOI MOSFETs.” IEEE Trans. Electron Devices 42(3), pp. 489-496, 1995.

    Google Scholar 

  40. O. Le Noel and M. Haond, “Electrical transient study of negative resistance in SOI MOS transistors.” Electronics Letters 26(1), pp. 73-74, 1990.

    Google Scholar 

  41. L. J. McDaid, S. Hall, P. H. Mellor, and W. Eccleston, “Physical origin of negative differential resistance in SOI transistors.” Electronics Letters 25(13), pp. 827-828, 1989.

    Google Scholar 

  42. L. T. Su, J. E. Chaung, D. A. Antoniadis, K. E. Goodson and M. I. Flik, “Measurement and modeling of self-heating in SOI NMOSFETs.” IEEE Trans. Electron Devices 41(1), pp. 69-75, 1994.

    Google Scholar 

  43. Y. Chen and T. A. Fjeldly, “UniÆed physical I-V model including self-heating effect for fully depleted SOI/ MOSFETs.” IEEE Trans. Electron Devices 43(8), pp. 1291-1296, 1996.

    Google Scholar 

  44. L. T. Su, D. A. Antoniadis, N. D. Arora, B. S. Doyle, and D. B. Krakauer, “SPICE model and parameters for fully-depleted SOI MOSFETs including self-heating.” IEEE Electron Device Letters 15(10), pp. 374-376, 1994.

    Google Scholar 

  45. G. O. Workman, J. G. Fossum, S. Krishnan, and M. M. Pellela, “Physical modeling of temperature dependences of SOI CMOS devices and circuits including self heating.” IEEE Trans. on Electron Devices 45(1), pp. 125-132, 1998.

    Google Scholar 

  46. D. Sinitshy, S. Tang, A. Jangity, F. Assaderaghi, G. Shahidi, and C. Hu, “Simulation of SOI devices and circuits using BSIM3SOI.” IEEE Electron Device Letters 19(9), pp. 323-325, 1998.

    Google Scholar 

  47. M. Berger and Z. Chai, “Estimation of heat transfer in SOIMOSFETs.” IEEE Trans. Electron Devices 384, pp. 871-875, 1991.

    Google Scholar 

  48. R. H. Tu, C. Wann, J. C. King, P. K. Ko, and C. Hu, “An AC conductance technique for measuring self-heating in SOI MOSFETs.” IEEE Electron Device Letters 16(2), pp. 67-69, 1995.

    Google Scholar 

  49. W. Jin, S. K. H. Fung, W. Liu, P. C. H. Chan, and C. Hu, “Selfheating characterization for SOI MOSFET based on AC output conductance,” in Proc. IEDM Tech. Dig., pp. 175-178, 1999.

  50. A. L. Caviglia and A. A. Iliadis, “A large-signal SOI MOSFET model including self-heating based on small-signal model parameters.” IEEE Trans. Electron Devices 46(4), pp. 762-768, 1999.

    Google Scholar 

  51. W. Redman-White, M. S. L. Lee, B. M. Tenbroek, M. J. Uren, and R. J. T. Bunyan, “Direct extraction of MOSFET dynamic thermal characteristics from standard transistor structures using small signal measurements.” Electronics Letters 29(13), pp. 1180-1181, 1993.

    Google Scholar 

  52. A. L. Caviglia and A. A. Iliadis, “Linear dynamic self heating in SOI MOSFETs.” IEEE Electron Device letters 14(3), pp.133-135, 1993.

    Google Scholar 

  53. B. M. Tenbroek, M. S. L. Lee, W. Redman-White, R. J. T. Bunyan, and M. J. Uren, “Self-heating in SOI MOSFETs and their measurement by small signal conductance techniques.” IEEE Trans. Electron Devices 43(12), pp. 2240-2248, 1996.

    Google Scholar 

  54. J. Jomaah, G. Ghibaudo, and F. Balestra, “Analysis and modeling of self-heating effects in thin-Ælm SOI MOSFETs as a function of temperature.” Solid-State Electronics 38(3), pp. 615-618, 1995.

    Google Scholar 

  55. O. Rozeau, J. Jomaah, J. Boussey, and C. Raynaud, “Impact of Øoating-body effect on RF performances of SOI MOSFET.” in Proc. ESSDERC'99, 1999.

  56. P. Raha, S. Ramaswamy, and E. Rosenbaum, “Heat Øow analysis for EOS/ESD protection device design in SOI technology.” IEEE Trans. Electron Devices 44(3), pp. 464-471, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozeau, O., Jomaah, J., Haendler, S. et al. SOI Technologies Overview for Low-Power Low-Voltage Radio-Frequency Applications. Analog Integrated Circuits and Signal Processing 25, 93–114 (2000). https://doi.org/10.1023/A:1008376514991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008376514991

Navigation