Skip to main content
Log in

RF/analog Performance Assessment of High Frequency, Low Power In0.3Al0.7As/InAs/InSb/In0.3Al0.7As HEMT Under High Temperature Effect

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we performed a Pseudo-morphic High Electron Mobility Transistors (pHEMT) In0.3Al0.7As/InAs/InSb/In0.3Al0.7 using Silvaco-TCAD. RF and analog electrical characteristics are assessed under high temperature effect. The impact of the temperature is evaluated referring to a device at room temperature. In particular, the threshold voltage (Vth), transconductance (gm), and Ion/Ioff ratio are calculated in the temperature range of 300 K to 700 K. The primary device exhibits a drain current of 950 mA, a threshold voltage of −1.75 V, a high value of transconductance gm of 650 mS/mm, Ion/Ioff ratio of 1 × 106, a transition frequency (ft) of 790 GHz, and a maximum frequency (fmax) of 1.4 THZ. The achieved results show that increasing temperature act to decrease current, reduce gm, and Ion/Ioff ratio. In more detail high temperature causes a phonon scattering mechanism happening that determine in turn a reduced drain current and shift positively the threshold voltage resulting in hindering the device DC/AC capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, M. Radosavljevic, Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 4(2), 153–158 (2005)

    Article  Google Scholar 

  2. M. Rodwell, Technology development and design for 22 nm InGaAs/InP-channel MOSFETs, in Proc. 18th IEEE IPRM Conf., May 2008, pp. 1–6.

  3. M. Khaouani, Low-power and high-frequency 14-nm in 0.53 Ga 0.47 as vertical rectangular gate-all-around MOSFETs. Trans. Electr. Electron. Mater 19(5), 337–343 (2018)

    Article  Google Scholar 

  4. F. Pezzimenti, H. Bencherif, A. Yousfi, L. Dehimi, Current-voltage analytical model and multiobjective optimization of design of a short channel gate-all-around-junctionless MOSFET. Solid State Electron. 161, 107642 (2019)

    Article  CAS  Google Scholar 

  5. H. Bencherif, L. Dehimi, G. Messina, P. Vincent, F. Pezzimenti, F.G. Della Corte, An optimized Graphene/4H-SiC/Graphene MSM UV-photodetector operating in a wide range of temperature. Sensor Actuat. A: Phys. 307, 112007 (2020)

    Article  CAS  Google Scholar 

  6. N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampatic, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, S. Datta, P. Majhi, W. Tsai, Addressing the gate stack challenge for high mobility InxGa1−xAs channels for NFETs, in IEDM Tech. Dig., 2008, pp. 363–366.

  7. Y. Xuan, T. Shen, M. Xu, Y.Q. Wu, P.D. Ye, High-performance surface channel in-rich In0.75Ga0.25As MOSFETs with ALD high-k as gate dielectric, in IEDM Tech. Dig., 2008, pp. 371–374.

  8. T.H. Chiang, W.C. Lee, T.D. Lin, D. Lin, K.H. Shiu, J. Kwo, W.E. Wang, W. Tsai, M. Hong, Approaching Fermi level unpinning in oxide—In0.2Ga0.8As, in IEDM Tech. Dig., 2008, pp. 375–378.

  9. N. Waldron, D.-H. Kim, J.A. del Alamo, A self-aligned InGaAs HEMT architecture for logic applications. IEEE Trans. Electron Devices 57(1), 297–304 (2010)

    Article  CAS  Google Scholar 

  10. J.A. del Alamo, fT=688 GHz and fmax=800 GHz in Lg=40 nm In0.7Ga0.3As MHEMTs with gm,max>2.7 mS/um, in IEEE International Electron Devices Meeting, Washington DC, December 5–7, 2011, CS-MANTECH, p. 17.

  11. N. Kharche, G. Klimeck, D. Kim, J.A. del Alamo, Performance analysis of ultra-scaled InAs HEMTs, in IEEE International Electron Devices Meeting (IEDM), 2009.

  12. C. Kuo, H. Heng-Tung, C. Edward, Y. Miyamoto, Y. Yasuyuki, RF and logic performance improvement of In0.7Ga0.3As/InAs/In0.7Ga0.3As composite-channel HEMT using gate-sinking technology. Elec. Dev. Lett 29, 290 (2008)

    Article  CAS  Google Scholar 

  13. A. Yousfi, H. Bencherif, S. Lamir, M.A. Abdi, Role of High-K and gate engineering in improving Rf/analog performances of In 0.2 Ga0. 8As/Al0. 3Ga0. 7As HEMT, in International Conference on Communications and Electrical Engineering (ICCEE), 2018, pp. 1–4.

  14. J.A. del Alamo, D.-H. Kim, N. Waldren, III–V CMOS: Challenges and opportunities, in Proc. SSDM Tech. Dig., 2008, pp. 28–29.

  15. R. Chau, III–V on silicon for future high speed and ultra-low power digital applications: Challenges and opportunities, in Proc. CS-MANTECH Dig., 2008, p. 1.4.

  16. M. Radosavljevic, T. Ashley, A. Andreev, S.D. Coomber, G. Dewey, M.T. Emeny, M. Fearn, D.G. Hayes, K.P. Hilton, M.K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S.J. Smith, M.J. Uren, D.J. Wallis, P.J. Wilding, R. Chau, Highperformance 40 nm gate length InSb P-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5 V) logic applications, in IEDM Tech. Dig., 2008, pp. 727–730.

  17. J.B. Boos, W. Kruppa, B.R. Bennett, D. Park, S.W. Kirchoefer, R. Bass, H.B. Dietrich, AlSb/InAs HEMT’s for low-voltage, high-speed applications. IEEE Trans. Electron Devices 45, 1869 (1998)

    Article  CAS  Google Scholar 

  18. C.R. Bolognesi, M.W. Dvorak, D.H. Chow, Impact ionization suppression by quantum confinement: effects on the DC and microwave performance of narrow band-gap channel InAs/AlSb HEMT’s. IEEE Trans. Electron Devices 46, 826 (1999)

    Article  CAS  Google Scholar 

  19. W. Kruppa, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, D. Park, R. Bass, Low-frequency noise in AlSb/InAs and related HEMTs. IEEE Trans. Electron Devices 54, 1193 (2007)

    Article  CAS  Google Scholar 

  20. B.Y. Ma, J. Bergman, P. Chen, J.B. Hacker, G. Sullivan, G. Nagy, B. Brar, InAs/AlSb HEMT and its application to ultra-low-power wideband high-gain low-noise amplifiers, IEEE. Trans. Microwave Theory Tech. 54, 4448 (2006)

    Article  CAS  Google Scholar 

  21. D.-H. Kim, J.A. del Alamo, 30-nm InAs PHEMTs with ft=644 GHz and fmax=681GHz, IEEE. Electron Device Lett. 31, 806 (2010)

    Article  CAS  Google Scholar 

  22. M. Malmkvist, E. Lefebvre, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, S. Bollaert, J. Grahn, Electrical characterization and small-signal modeling of InAs/AlSb HEMTs for low-noise and high-frequency applications. IEEE Trans. Microwave Theory Tech. 56, 2685 (2008)

    Article  CAS  Google Scholar 

  23. E. Lefebvre, M. Malmkvist, M. Borg, L. Desplanque, X. Wallar, G. Dambrine, S. Bollaert, J. Grahn, Gate-recess technology for InAs/AlSb HEMTs. IEEE Trans. Electron Devices 56, 1904 (2009)

    Article  CAS  Google Scholar 

  24. C. Kumar, M. Aghasyan, H. Modrow, et al., Synthesis and characterization of S-Au interaction in gold nanoparticle bound polymeric beads. J. Nanoparticle Res. 6(4), 369–376 (2004)

    Article  CAS  Google Scholar 

  25. H.D. Chang, B. Sun, L. Lu, W. Zhao, S.K. Wang, W.X. Wang, H.G. Liu, Study on high mobility In0. 6Ga0. 4As channel MOSHEMT and MOSFET. Acta Phys. Sin 61, 217304 (2012) (in Chinese)

    Google Scholar 

  26. M. Kasap, S. Acar, S. Celik, S. Karadeniz, N. Tugluoglu, Chin. Phys. Lett. 22, 1218 (2005).

  27. T. Paskova, D.A. Hanser, K.R. Evans, GaN substrates for III-nitride devices. Proc. IEEE 98, 1324 (2010)

    Article  CAS  Google Scholar 

  28. T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S.P. DenBaars, U.K. Mishra, AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett. 27, 13 (2006)

    Article  CAS  Google Scholar 

  29. K. Walter, J.B. Boos, B.R. Bennett, N.A. Papanicolaou, P. Doewon, R. Bass, Low-frequency noise in AlSb/InAs and related HEMTs. IEEE Trans. Electron Devices 54, 1193 (2007)

    Google Scholar 

  30. S.P. Kumar, A. Agrawal, R. Chaujar, S. Kabra, M. Gupta, R.S. Gupta, Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson’s equation. Microelectron. J 38, 1013–1020 (2007)

    Article  Google Scholar 

  31. Y.G. Sadofyev, A. Ramamoorthy, B. Naser, J.P. Bird, S.R. Johnson, Y.-H. Zhang, Large g-factor enhancement in high-mobility InAs/AlSb quantum wells. Appl. Phys. Lett. 81, 1833 (2002)

    Article  CAS  Google Scholar 

  32. Silvaco Int., Atlas user’s manual, Device Simulator Software (2016).

  33. S.K. Pati, H. Pardeshi, G. Raj, N.M. Kumar, C.K. Sarkar, Impact of gate length and barrier thickness on performance of InP/InGaAs based Double Gate Metal–Oxide-Semiconductor Heterostructure Field-Effect Transistor (DG MOS-HFET). Superlattic. Microst. 55, 8–15 (2013)

    Article  CAS  Google Scholar 

  34. S. Selberherr, Analysis and simulation of semiconductor devices (Springer, Wien, 1984)

    Book  Google Scholar 

  35. A. Pérez-Tomás, A. Fontserè, AlGaN/GaN hybrid MOS-HEMT analytical mobility model. Solid-State Electron. 56(1), 201–206 (2011)

    Article  Google Scholar 

  36. M. Ruff, H. Mitlehner, R. Helbig, SiC devices: physics and numerical simulation. IEEE Trans. Electron Devices 41, 1040 (1994)

    Article  CAS  Google Scholar 

  37. T. Ayalew, T. Grasser, H. Kosina, S. Selberherr, Mater. Sci. Forum. 483, 845 (2005).

  38. T. Troffer, M. Schadt, T. Frank, H. Itoh, G. Pensl, J. Heindl, H.P. Strunk, M. Maier, Doping of SiC by implantation of boron and aluminum. Phys. Status Solidi (a) 162, 277 (1997)

    Article  CAS  Google Scholar 

  39. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55, 2192–2193 (1967)

    Article  Google Scholar 

  40. M. Roschke, F. Schwierz, Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans. Electron Devices 48, 1442 (2001)

    Article  CAS  Google Scholar 

  41. H. Bencherif, L. Dehimi, F. Pezzimenti, F.G. Della Corte, Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl. Phys. A 125(5), 294 (2019)

    Article  CAS  Google Scholar 

  42. R. Raghunathan, B.J. Baliga, in Measurement of electron and hole impact ionization coefficients for SiC. Proceedings of 9th International Symposium on Power Semiconductor Devices and IC’s, IEEE (1997) pp. 173–176.

  43. P.T. Landsberg, G.S. Kousik, J. Appl. Phys. 56, 1696 (1984).

  44. M. Bakowski, U. Gustafsson, U. Lindefelt, Phys. Status Solidi (a) 162, 421 (1997).

  45. R. Pässler, Parameter sets due to fittings of the temperature dependencies of fundamental bandgaps in semiconductors. Physica Status Solidi (b) 216(2), 975–1007 (1999)

    Article  Google Scholar 

  46. H. Bencherif, L. Dehimi, F. Pezzimenti, A. Yousfi, G. De Martino, F.G. Della Corte, Impact of a non-uniform p-base doping concentration on the electrical characteristics of a low power MOSFET in 4H-SiC. In 2019 International Conference on Advanced Electrical Engineering (ICAEE), 2019, pp. 1–4. IEEE.

  47. M. Khouani, A. Hamdoune, H. Bencherif, Z. Kourdi, L. Dehimi, An ultra-sensitive AlGaN/AlN/GaN/AlGaN Photodetector: proposal and investigation. Optik 217, 164797 (2020)

    Article  Google Scholar 

  48. O. Terghini, L. Dehimi, A.M. Mefteh, H. Bencherif, Performance evaluation and comparison of monolithic and mechanically stacked dual tandem InGaP/GaAs heterojunction on Ge Cell: A TCAD study. Trans. Electr. Electron. Mater. 21, 1–10 (2020)

    Article  Google Scholar 

  49. H. Bencherif, L. Dehimi, F. Pezzimenti, G. De Martino, F.G. Della Corte, Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J. Electron. Mater 48(6), 3871–3880 (2019)

    Article  CAS  Google Scholar 

  50. K. Zeghdar, H. Bencherif, L. Dehimi, F. Pezzimenti, F.G. Della Corte, Analysis of the current-voltage-temperature characteristics of Wl4H-SiC Schottky barrier diodes for high performance temperature sensors. In 2019 International Semiconductor Conference (CAS), 2019. IEEE, pp. 277–280.

  51. R. Lai, X.B. Mei, W.R. Deal, W. Yoshida, Y.M. Kim, P.H. Liu, T. Gaier, Sub 50 nm InP HEMT device with Fmax greater than 1 THz, in 2007 IEEE International Electron Devices Meeting, 2007, IEEE, pp. 609–611.

  52. W.B. Lanford, T. Tanaka, Y. Otoki, I. Adesida, Recessed-gate enhancement-mode GaN HEMT with high threshold voltage. Electron. Lett. 41(7), 449–450 (2005)

    Article  CAS  Google Scholar 

  53. Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, M. Micovic, Ultra-high-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz. IEEE Electron Device Lett. 36(6), 549–551 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bencherif.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaouani, M., Bencherif, H., Hamdoune, A. et al. RF/analog Performance Assessment of High Frequency, Low Power In0.3Al0.7As/InAs/InSb/In0.3Al0.7As HEMT Under High Temperature Effect. Trans. Electr. Electron. Mater. 22, 459–466 (2021). https://doi.org/10.1007/s42341-020-00250-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-020-00250-8

Keywords

Navigation