Skip to main content
Log in

Galactic and Stellar Dynamics: Limits and Perspectives

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

An elementary review about stellar and galactic dynamics is presented. Despite involving extremely classical Newtonian physics, stellar dynamics presents some fundamental difficulties rarely discussed in the literature, such as why the phase space distribution is assumed to be a smooth function of coordinates. Many systems are found to be unstable over intermediate time-scales, as more instabilities have been discovered over the years, so the old aim of describing equilibrium stable systems shifts presently toward understanding evolutive systems. From the linearized variational Boltzmann equation a distinction can be made between instabilities triggered by the chaotic part of phase space, and instabilities caused by steep gradients in the velocity part of the distribution function. The new challenges to include evolutive systems can presently only be studied efficiently with computer techniques. Future studies are likely to involve orders of magnitude more advanced computers in which parallelism will play a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appel A.W.: 1985, SIAM J. of Sci. and Stat. Comput. 6, 85

    Article  MathSciNet  Google Scholar 

  • Arnold V.I.: Mathematical Methods of Classical Mechanics, Springer, New York

  • Athanassoula E., Bosma A., Lambert J.-C., Makino J.: 1998, Monthly Notices of the Royal Astron. Soc. 293, 369

    Article  ADS  Google Scholar 

  • Barnes J.E., Hut P.: 1986, Nature 324, 446

    Article  ADS  Google Scholar 

  • Binney J.J., Tremaine S.: 1987, 1992, Galactic Dynamics, Princeton University Press, Princeton

    Google Scholar 

  • Chandrasekhar S.: 1942, Principles of Stellar Dynamics, University of Chicago Press, Chicago

    Google Scholar 

  • Chvátal V.: 1983, Linear Programming, Freeman, New York

    Google Scholar 

  • Freidlin M.I., Wentzel A.D.: 1984, Random Perturbations of Dynamical Systems, Springer, New York

    Google Scholar 

  • Fridman A.M., Polyachenko V.L.: 1984, Physics of Gravitating Systems I & II, Springer, New York

    Google Scholar 

  • Froeschlé C.: 1972, Astron. & Astroph. 16, 172

    MATH  ADS  Google Scholar 

  • Goldstein H.: 1950, Classical Mechanics, Adison-Wesley, Reading

    Google Scholar 

  • Greengard L., Rohklin V.: 1987, J. Comput. Phys. 73, 325

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gurzadyan V.G., Savvidy G.K.: 1986, Astron. & Astroph. 160, 203

    MATH  ADS  Google Scholar 

  • Hénon M.: 1973, in Dynamical Structure and Evolution of Stellar Systems, Swiss Soc. Astron. Astrophys. Third Advanced Saas-Fee Course, L. Martinet & M. Mayor (eds.), Geneva Observatory, Geneva, 183

    Google Scholar 

  • Hénon M.: 1982, Astron. & Astrophys. 114, 211

    ADS  Google Scholar 

  • Hockney R.W., Eastwood J.W.: 1981. Computer Simulation Using Particles, McGraw-Hill, New York

    Google Scholar 

  • Kant I., 1755, Allgemeine Naturgeschichte und Theorie des Himmels, Petersen, Könisberg and Leipzig; French translation in Histoire Générale de la Nature et Théorie du Ciel, Vrin, Paris (1984)

    Google Scholar 

  • Landau L.D., Lifshitz E.M.: 1976, Mechanics, 3rd ed., Pergamon, Oxford

    Google Scholar 

  • Lawson C.L., Hanson R.J.: 1995, Solving Least Squares Problems, SIAM, Philadelphia

    Google Scholar 

  • Lichtenberg A.J., Lieberman M.A.: 1992, Regular and Chaotic Dynamics, 2nd ed., Appl. Math. Sc. 38, Springer, New York

    Google Scholar 

  • Lindblad P.O.: 1960. Stockholms Observatoriums Annaler 21,No. 3–4

  • Lucy L.B.: 1975, Astron. J. 79, 745

    Article  ADS  Google Scholar 

  • Lynden-Bell D.: 1967, Monthly Notices Royal Astron. Soc. 136, 101

    ADS  Google Scholar 

  • Makino J., Taiji M., Ebisuzaki T., Sugimoto D.: 1997, Astrophys. J. 480, 432

    Article  ADS  Google Scholar 

  • Mandelbrot B.B.: 1982, The Fractal Geometry of Nature, Freeman, New York

    Google Scholar 

  • Miller R.H.: 1964, Astrophys. J. 140, 250

    Article  ADS  Google Scholar 

  • Miller R.H.: 1994, Celest. Mech. & Dynamical Astr. 59, 161

    Article  MATH  ADS  Google Scholar 

  • Pfenniger D.: 1984, Astron. άp; Astrophys. 141, 171

    MathSciNet  ADS  Google Scholar 

  • Pfenniger D.: 1986, Astron. & Astrophys. 165, 74

    MATH  ADS  Google Scholar 

  • Pfenniger D., Friedli D.: 1991, Astron. & Astrophys. 252, 75

    ADS  Google Scholar 

  • Pfenniger D., Norman C.: 1990, Astrophys. J. 363, 391

    Article  ADS  Google Scholar 

  • Raha N., Sellwood J.A., James R.A., Kahn F.D.: 1991, Nature 352, 411

    Article  ADS  Google Scholar 

  • Schwarzschild M.: 1979, Astrophys. J. 232, 236

    Article  ADS  Google Scholar 

  • Spurzem R., Aarseth S.J.: 1996, Monthly Notices Royal Astron. Soc. 282, 19

    ADS  Google Scholar 

  • Sridhar S.: 1986, Monthly Notices Royal Astron. Soc. 238, 1159

    ADS  Google Scholar 

  • Udry S., Pfenniger D.: 1988, Astron. & Astrophys. 198, 135

    MATH  MathSciNet  ADS  Google Scholar 

  • Vujanovic B.D., Jones S.E.: 1989, Variational Methods in Nonconservative Phenomena, Math. Sc. and Eng. 182, Academic Press, Boston

    Google Scholar 

  • Warren M.S.: 1998, http://qso.lanl.gov/pictures/all.gif

  • Wozniak H., Pfenniger D.: 1997, Astron. & Astrophys. 317, 14

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfenniger, D. Galactic and Stellar Dynamics: Limits and Perspectives. Celestial Mechanics and Dynamical Astronomy 72, 37–67 (1998). https://doi.org/10.1023/A:1008362513861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008362513861

Navigation