Skip to main content

The Evolution of High-Mass Stars

  • Reference work entry
Planets, Stars and Stellar Systems

Abstract

The evolution of stars more massive than 8 M is discussed in this chapter. On the main sequence, these stars have spectral types of B2 or earlier, but depending on their mass can evolve into red supergiants, blue supergiants, Cepheids, Wolf–Rayet stars, Of stars, or luminous blue variables before ending their evolution as core collapse supernovae and neutron stars or black holes. The chapter begins with a general discussion of the energy production in the interior of a massive star as it evolves. The main fusion reactions that generate the star’s energy are listed. Some observed properties of the O and early B main-sequence stars and their evolved products are discussed including the best determinations of their masses. The computation of contemporary evolutionary tracks that include stellar rotation and magnetic fields is detailed. The equations of stellar structure including those for energy conservation, momentum transfer, mass conservation, and energy transport are listed. The discussion includes the meridional circulation in the interior of a rotating massive star and its effect on the transport of nuclear-processed material to the surface and the impact of rotation, mass loss, and metallicity on the evolutionary tracks. Recent evolutionary tracks from the Geneva group are presented. Finally the newest evolutionary tracks and the surface abundances predicted by the calculations are compared with recent observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The ratio of the number of 20 M stars to one solar mass stars in the Milky Way galaxy is about 10− 5; for every 100 M star, there are a more than a million suns (Massey 2003).

  2. 2.

    Thermonuclear reaction chains are frequently written in a compact form showing the by-products in parentheses (e.g., the CNO bi-cycle is \({\mathrm{O}}^{16}(\mathrm{p},\gamma ){\mathrm{F}}^{17}{(\beta }^{+}\nu _{\mathrm{e}}){O}^{17}(\mathrm{p},\alpha ){\mathrm{N}}^{14}\), where p,  β +,  ν e, and α are the proton, positron, neutrino, and helium nucleus.)

  3. 3.

    In the jargon of nucleosynthesis, the term “ash” is used to mean the nuclear product of a series of thermonuclear reactions.

  4. 4.

    Historically such thermonuclear reactions have been called “burning” as the fusion reactions consume a nuclear “fuel,” but this is a misnomer as the term implies that the reactions are chemical rather than nuclear. Nevertheless, the term is occasionally used in this chapter.

  5. 5.

    4He comes from the photo-disintegration of 28Si.

  6. 6.

    The far ultraviolet spectra of B stars as cool as B0.5 IV (e.g., HR 1887) reveal violet asymmetries in the resonance lines from abundant ions such as Si IV, and such features most certainly contain a weak wind component.

  7. 7.

    The Eddington limit is the maximum radiative luminosity a star can reach and still be in hydrostatic equilibrium. \(\mathrm{L}_{\mathrm{Ed}} = 4\pi \mathrm{cGM}/\bar{\kappa }\), where c the speed of light, G is the gravitational constant, M the star’s mass, and \(\bar{\kappa }\) the mean opacity in the surface layers, which can include electron scattering and a temperature-dependent component due to lines from the Fe group elements.

  8. 8.

    See Porter and Rivinius (2003) for historical information on these interesting objects and Neiner (2011) for a recent update on their properties, evolution, and activity.

  9. 9.

    γ Cas, (Sechhi 1867).

  10. 10.

    The carbon lines were typically weaker than those computed with the Lanz–Hubeny model atmospheres and solar abundances. This could mean a reduced carbon abundance or emission filling from the circumstellar disk.

  11. 11.

    The duration of the corresponding WR phase is not very sensitive to the choice of this limit if it remains in the range 0.3–0.4 as mentioned by Meynet and Maeder (2003).

References

  • Andersen, J. 1991, A&A Rev, 3, 91

    ADS  Google Scholar 

  • Anderson, J., & Clausen, J. V. 1989, A&A, 213, 183

    ADS  Google Scholar 

  • Andersen, J., Clausen, J. V., Nordström, B., & Reipurth, B. 1983, A&A, 121, 271

    ADS  Google Scholar 

  • Arnett, W. D., & Meakin, C. 2011, ApJ, 741, 33

    ADS  Google Scholar 

  • Arnett, W. D., Bahcall, J. N., Kirshner, R. P., & Woosley, S. E. 1989, ARA&A, 27, 629

    ADS  Google Scholar 

  • Böhm-Vitense, E. 1958, ZAp, 46, 108

    ADS  Google Scholar 

  • Braithwaite, J. 2006, A&A, 449, 451

    ADS  MATH  Google Scholar 

  • Brott, I., Hunter, I., de Koter, A., Langer, N., Lennon, D., & Dufton, P. 2009, Commun. Asteroseismol., 158, 55

    ADS  Google Scholar 

  • Brott, I., et al. 2011, A&A, 530, A115

    ADS  Google Scholar 

  • Brüggen, M., & Hillebrandt, W. 2001, MNRAS, 323, 56

    ADS  Google Scholar 

  • Canuto, V. M. 2002, A&A, 384, 1119

    ADS  Google Scholar 

  • Chaboyer, B., & Zahn, J.-P. 1992, A&A, 253, 173

    ADS  MATH  Google Scholar 

  • Chiappini, C., Hirschi, R., Meynet, G., Ekström, S., Maeder, A., & Matteucci, F. 2006, A&A, 449, L27

    ADS  Google Scholar 

  • Chieffi, A., Limongi, M., & Straniero, O. 1998, ApJ, 502, 737

    ADS  Google Scholar 

  • Clausen, J. V., & Gimenez, A. 1991, A&A, 241, 98

    ADS  Google Scholar 

  • Clausen, J. V., Helt. B. E., Gimenez, A., Vaz, L. P. R., Garcia, J. M., Olsen, E. H., & Southworth, J. 2007, A&A, 461, 1065

    Google Scholar 

  • Clayton, D. D. 1983, Principles of Stellar Evolution and Nucleosynthesis, (2nd ed.; Chicago, IL: University of Chicago Press)

    Google Scholar 

  • Cranmer, S. R. 2005, ApJ, 634, 585

    ADS  Google Scholar 

  • Crowther, P. A. 2007, ARA&A, 45, 177

    ADS  Google Scholar 

  • Crowther, P. A., De Marco, O., & Barlow, M. J. 1998, MNRAS, 296, 367

    ADS  Google Scholar 

  • Crowther, P. A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P., & Kassim, H. A. 2010, MNRAS, 408, 731

    ADS  Google Scholar 

  • de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, A&AS, 72, 259

    ADS  Google Scholar 

  • Dohm-Palmer, R. C., & Skillman, E. D. 2002, AJ, 123, 1433

    ADS  Google Scholar 

  • Drout, M. R., Massey, P., & Meynet, G. 2012, ApJ, 750, 97

    ADS  Google Scholar 

  • Eggenberger, P., Meynet, G., & Maeder, A. 2002, A&A, 386, 576

    ADS  Google Scholar 

  • Eggenberger, P., Meynet, G., Maeder, A., Hirschi, R., Charbonnel, C., Talon, S., & Ekström, S. 2007, Ap&SS, 263

    Google Scholar 

  • Ekström, S., et al. 2012, A&A, 537, A146

    ADS  Google Scholar 

  • Evans, C. J., et al. 2005, A&A, 437, 467

    ADS  Google Scholar 

  • Evans, C. J., Lennon, D. J., Smartt, S. J., & Trundle, C. 2006, A&A, 456, 623

    ADS  Google Scholar 

  • Fliegner, J., Langer, N., & Venn, K. A. 1996, A&A, 308, L13

    ADS  Google Scholar 

  • Frémat, Y., Zorec, J., Hubert, A.-M., & Floquet, M. 2005, å, 440, 305

    Google Scholar 

  • Fricke, K. 1968, Z Astrophys, 68, 317

    ADS  Google Scholar 

  • Frischknecht, U., Hirschi, R., Meynet, G., Ekström, S., Georgy, C., Rauscher, T., Winteler, C., & Thielemann, F.-K. 2010, A&A, 522, A39

    ADS  Google Scholar 

  • Frischknecht, U., Hirschi, R., & Thielemann, F.-K. 2012, A&A, 538, L2

    ADS  Google Scholar 

  • Gagné, M., Fehon, G., Savoy, M. R., & Cohen, D. H., et al. 2011, ApJS, 194, A5

    ADS  Google Scholar 

  • Georgy, C., Ekström, S., Meynet, G., Massey, P., Levesque, E. M., Hirschi, R., Eggenberger, P., & Maeder, A. 2012, A&A in press, arXiv:1203.5243

    Google Scholar 

  • Giannone, P. 1967, ZAp, 65, 226

    ADS  Google Scholar 

  • Goldreich, P., & Schubert, G. 1967, ApJ, 150, 571

    ADS  Google Scholar 

  • Gray, R. O., & Corbally, C. J. 2009, Stellar Spectral Classification (Princeton: Princeton University Press)

    Google Scholar 

  • Groh, J. H., Damineli, A., & Hillier, D. J., et al. 2009, ApJ, L25

    Google Scholar 

  • Hamann, W.-R., Gräfener, G., & Liermann, A. 2006, A&A, 457, 1015

    ADS  Google Scholar 

  • Harmanec, P. 1988, Bull Astron Inst Cz, 39, 329

    ADS  Google Scholar 

  • Heger, A., & Langer, N. 2000, ApJ, 544, 1016

    ADS  Google Scholar 

  • Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368

    ADS  Google Scholar 

  • Hensberge, H., Pavlovski, K., & Verschueren, W. 2000, A&A, 358, 553

    ADS  Google Scholar 

  • Hirschi, R. 2007, A&A, 461, 571

    ADS  Google Scholar 

  • Hirschi, R., & Maeder, A. 2010, A&A, 519, A16

    ADS  Google Scholar 

  • Hirschi, R., Meynet, G., & Maeder, A. 2004, A&A, 425, 649

    ADS  MATH  Google Scholar 

  • Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581

    ADS  Google Scholar 

  • Holmgren, D. E., Hill, G., & Fisher, W. 1990, A&A, 236, 409

    ADS  Google Scholar 

  • Howarth, I. D., & Prinja, R. K. 1989, ApJS, 69, 527

    ADS  Google Scholar 

  • Hubeny, I. 1988, Comput Phys Commun, 52, 103

    ADS  Google Scholar 

  • Hubeny, I., & Lanz, T. 1995, ApJ, 439, 875

    ADS  Google Scholar 

  • Humphreys, R. M., & Davidson, K. 1994, PASP, 106, 1025

    ADS  Google Scholar 

  • Hunter, I., et al. 2007, A&A, 466, 277

    ADS  Google Scholar 

  • Hunter, I., et al. 2008, ApJ, 676,

    Google Scholar 

  • Hunter, I., et al. 2009, A&A, 496, 841

    ADS  Google Scholar 

  • Iben, I., Jr. 1967, ARA&A, 5, 571

    ADS  Google Scholar 

  • Iben, I., Jr., & Renzini, A. 1983, ARA&A, 21, 271

    ADS  Google Scholar 

  • Käppeler, F., Gallino, R., Bisterzo, S., & Aoki, W. 2011, Rev Mod Phys, 83, 157

    ADS  Google Scholar 

  • Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution (Berlin: Springer)

    MATH  Google Scholar 

  • Kippenhahn, R., Weigert, A., & Hofmeister, E. 1967, in Methods in Computational Physics, Vol. 7, ed. B. Alder, S. Fernbach, & M. Rotenberg (New York, NY/London, UK: Academic press)

    Google Scholar 

  • Knobloch, E., & Spruit, H. C. 1983, A&A, 125, 59

    ADS  MATH  Google Scholar 

  • Kudritzki, R.-P., & Puls, J. 2000, ARA&A, 38, 613

    ADS  Google Scholar 

  • Langer, N., & Maeder, A. 1995, A&A, 295, 685

    ADS  Google Scholar 

  • Langer, N., Cantiello, M., Yoon, S. C., Hunter, I., Brott, I., Lennon, D., de Mink, S., & Verheijdt, M. 2008, in Proc. IAU Symp. 250, Massive Stars as Cosmic Engines, ed. F. Bresolin, P.A. Crowther & J. Puls (Cambridge: Cambridge University Press), 167

    Google Scholar 

  • Lanz, T., & Hubeny, I. 2007, ApJS, 169, 83

    ADS  Google Scholar 

  • Levesque, E. M., Massey, P., Olsen, K. A. G., Plez, B., Josselin, E., Maeder, A., & Meynet, G. 2005, ApJ, 628, 973

    ADS  Google Scholar 

  • Limongi, M., Straniero, O., & Chieffi, A. 2000, ApJS, 129, 625

    ADS  Google Scholar 

  • Maeder, A. 1997, A&A, 321, 134

    ADS  Google Scholar 

  • Maeder, A. 2003, A&A, 399, 263

    ADS  Google Scholar 

  • Maeder, A. 2009, Physics, Formation, and Evolution of Rotating Stars, (Berlin: Springer)

    Google Scholar 

  • Maeder, A., & Meynet, G. 1989, A&A, 210, 155

    ADS  Google Scholar 

  • Maeder, A., & Meynet, G. 2000a, ARA&A, 38, 143

    ADS  Google Scholar 

  • Maeder, A., & Meynet, G. 2000b, A&A, 361, 159

    ADS  Google Scholar 

  • Maeder, A., & Meynet, G. 2001, A&A, 373, 555

    ADS  Google Scholar 

  • Maeder, A., & Meynet, G. 2005, A&A, 440, 1041

    ADS  Google Scholar 

  • Maeder, A., & Meynet, G. 2012, Rev Mod Phys, 84, 25

    ADS  Google Scholar 

  • Maeder, A., & Zahn, J. 1998, A&A, 334, 1000

    ADS  Google Scholar 

  • Maeder, A., Meynet, G., Ekström, S., & Georgy, C. 2009, Commun Asteroseismol, 158, 72

    ADS  Google Scholar 

  • Massey, P. 2003, ARA&A, 41, 15

    ADS  Google Scholar 

  • Massey, P., & Grove, K. 1989, ApJ, 344, 870

    ADS  Google Scholar 

  • Meakin, C. A., & Arnett, D. 2007, ApJ, 667, 448

    ADS  Google Scholar 

  • Mendel, J. T., Venn, K. A., Proffitt, C. R., Brooks, A. M., & Lambert, D. L. 2006, ApJ, 640, 1039

    ADS  Google Scholar 

  • Meylan, G., & Maeder, A. 1983, A&A, 124, 84

    ADS  Google Scholar 

  • Meynet, G. 1993, in The Feedback of Chemical Evolution on the Stellar Content of Galaxies, ed. D. M. Alloin, & G. Stasińska (Meudon: L’Observatoire de Paris), 40

    Google Scholar 

  • Meynet, G., & Maeder, A. 1997, A&A, 321, 465

    ADS  Google Scholar 

  • Meynet, G., & Maeder, A. 2002, A&A, 390, 561

    ADS  Google Scholar 

  • Meynet, G., & Maeder, A. 2003, A&A, 404, 975

    ADS  Google Scholar 

  • Meynet, G., Eggenberger, P., & Maeder, A. 2007, in Proc. IAU Symp. 241, Stellar Populations as Building Blocks of Galaxies, ed. A. Vazdekis & R. F. Peletier (Cambridge: Cambridge University Press), 13

    Google Scholar 

  • Meynet, G., Ekström, S., & Maeder, A. 2006, A&A, 447, 623

    ADS  Google Scholar 

  • Meynet, G., Georgy, C., Hirschi, R., Maeder, A., Massey, P., Przybilla, N., & Nieva, M.-F. 2011, Bull Soc R Sci Liege, 80, 266

    ADS  Google Scholar 

  • Morel, T., Hubrig, S., & Briquet, M. 2008, A&A, 481, 453

    ADS  Google Scholar 

  • Nazé, Y., Broos, P. S., Oskinova, L., & Townsley, L. K., et al. 2011, ApJS, 194, A7

    ADS  Google Scholar 

  • Neiner, C. 2011, in Proc. IAU Symp. 272, Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits, ed. C. Neiner, G. Wade, G., Meynet, & G. Peters (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Neugent, K. F., Massey, P., Skiff, B., & Meynet, G. 2012, ApJ, 749, A177

    ADS  Google Scholar 

  • Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227

    Google Scholar 

  • Pagel, B. E. J. 2009, Nucleosynthesis and Chemical Evolution of Galaxies (Cambridge: Cambridge University Press)

    Google Scholar 

  • Pavlovski, K., & Hensberge, H. 2005, A&A, 439, 309

    ADS  Google Scholar 

  • Pavlovski, K., & Southworth, J. 2009, MNRAS, 394, 1519

    ADS  Google Scholar 

  • Pavlovski, K., Tamajo, E., Koubský, P., Southworth, J., Yang, S., & Kolbas, V. 2009, MNRAS, 400, 791

    ADS  Google Scholar 

  • Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., & Timmes, F. 2011, ApJS, 192, 3

    ADS  Google Scholar 

  • Peters, G. J. 2011, in Proc. IAU Symp. 272, Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits, ed. C. Neiner, G. Wade, G. Meynet, & G. Peters (Cambridge: Cambridge University Press), 101

    Google Scholar 

  • Podsiadlowski, P., Hsu, J. J. L., Joss, P. C., & Ross, R. R. 1993, Nature, 364, 509

    ADS  Google Scholar 

  • Porter, J. M., & Rivinius, T. 2003, PASP, 115, 1153

    ADS  Google Scholar 

  • Popper, D. M., & Etzel, P. B. 1981, AJ, 86, 102

    ADS  Google Scholar 

  • Popper, D. M., & Hill, G. 1991, AJ, 101, 600

    ADS  Google Scholar 

  • Pourbaix, D., et al. 2004, A&A, 424, 727

    ADS  Google Scholar 

  • Prinja, R. D., Massa, D., & Fullerton, A. W. 2002, å, 388, 587

    Google Scholar 

  • Proffitt, C. R., & Quigley, M. F. 2001, ApJ, 548, 429

    ADS  Google Scholar 

  • Proffitt, C. R., Jönsson, P., Litzén, U., Pickering, J. C., & Wahlgren, G. M. 1999, ApJ, 516, 342

    ADS  Google Scholar 

  • Raassen, A. J. J., van der Hucht, K. A., Mewe, R., Antokhin, I. I., Rauw, G., Vreux, J.-M., Schmutz, W., & Güdel, M. 2003, A&A, 402, 653

    ADS  Google Scholar 

  • Rauw, G., Vreux, J.-M., Gosset, E., Hutsemekers, D., Magain, P., & Rochowicz, K. 1996, A&A, 306, 771

    ADS  Google Scholar 

  • Salasnich, B., Bressan, A., & Chiosi, C. 1999, A&A, 342, 131

    ADS  Google Scholar 

  • Sander, A., Hamann, W.-R., & Todt, H. 2012, ArXiv e-prints:1201.6354

    Google Scholar 

  • Schaerer, D., & de Koter, A. 1997, A&A, 322, 598

    ADS  Google Scholar 

  • Schaller, G., Schaerer, D., Meynet, G., & Maeder, A. 1992, A&AS, 96, 269

    ADS  Google Scholar 

  • Schnurr, O., Casoli, J., Chené, A.-N., Moffat, A. F. J., & St-Louis, N. 2008, MNRAS, 389, L38

    ADS  Google Scholar 

  • Secchi, A. 1867, Astron Nachr, 68, 63

    ADS  Google Scholar 

  • Simon, K. P., Sturm, E., & Fiedler, A. 1994, A&A, 292, 507

    ADS  Google Scholar 

  • Smith, N. 2011, in Proc. IAU Symp. 272, Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits, ed. C. Neiner, G. Wade, G. Meynet, G. Peters (Cambridge: Cambridge University Press), 571

    Google Scholar 

  • Smith, N., Miller, A., Li, W., & Filippenko, A. V., et al. 2010, AJ, 139, 1451

    ADS  Google Scholar 

  • Southworth, J., & Clausen, J. V. 2007, A&A, 461, 1077

    ADS  Google Scholar 

  • Southworth, J., Maxted, P. F. L., & Smalley, B. 2004, MNRAS, 351, 1277

    ADS  Google Scholar 

  • Spite, M., et al. 2005, A&A, 430, 655

    ADS  Google Scholar 

  • Spruit, H. C. 2002, A&A, 381, 923

    ADS  Google Scholar 

  • Struve, O. 1931, ApJ, 73, 94

    ADS  Google Scholar 

  • Suijs, M. P. L., Langer, N., Poelarends, A.-J., Yoon, S.-C., Heger, A., & Herwig, F. 2008, A&A, 481, L87

    ADS  Google Scholar 

  • Townsend, R. H. D., Owocki, S. P., & Howarth, I. D. 2004, MNRAS, 350, 189

    ADS  Google Scholar 

  • Trundle, C., Dufton, P. L., Hunter, I., Evans, C. J., Lennon, D. J., Smartt, S. J., & Ryans, R. S. I. 2007, A&A, 471, 625

    ADS  Google Scholar 

  • Vanbeveren, D. 2001, in The Influence of Binaries on Stellar Population Studies, ed. D. Vanbeveren (Dordrecht: Kluwer)

    Google Scholar 

  • Vanbeveren, D., Van Bever, J., & Belkus, H. 2007, ApJ, 662, L107

    ADS  Google Scholar 

  • van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273

    ADS  Google Scholar 

  • Van Rensbergen, W., De Greve, J. P., Mennekens, N., Jansen, K., & De Loore, C. 2010, A&A, 510, A13

    ADS  Google Scholar 

  • Van Rensbergen, W., De Greve, J. P., Mennekens, N., Jansen, K., & De Loore, C. 2011, A&A, 528, A16

    ADS  Google Scholar 

  • Vaz, L. P. R., Cunha, N. C. S., Vieira, E. F., & Myrrha, M. L. M. 1997, A&A,327, 1094

    Google Scholar 

  • Venn, K. A., Brooks, A. M., Lambert, D. L., Lemke, M., Langer, N., Lennon, D. J., & Keenan, F. P. 2002, ApJ, 565, 571

    ADS  Google Scholar 

  • Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574

    Google Scholar 

  • von Zeipel, H. 1924, MNRAS, 84, 665

    ADS  Google Scholar 

  • Walborn, N. R., Howarth, I. D., & Lennon, D. J., et al. 2002, AJ, 123, 2754

    ADS  Google Scholar 

  • Walder, R., Folini, D., & Meynet, G. 2011, Space Sci Rev, 125

    Google Scholar 

  • Woosley, S. E., & Weaver, T. A. 1986, ARA&A, 24, 205

    ADS  Google Scholar 

  • Yoon, S.-C., & Cantiello, M. 2010, ApJ, 717, L62

    ADS  Google Scholar 

  • Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199

    ADS  Google Scholar 

  • Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, ApJ, 725, 940

    ADS  Google Scholar 

  • Zahn, J.-P. 1992, A&A, 265, 115

    ADS  Google Scholar 

  • Zahn, J., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145

    ADS  MATH  Google Scholar 

Download references

Acknowledgment

GJP is grateful for the support from several NASA grants including NNX07AF89G, NNX07AH56G, and NNX10AD66G and the Women in Science and Engineering Program (WiSE) at USC. RH acknowledges support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and from ESF-EuroGENESIS program. RH also expresses his gratitude to the groups of Professors Maeder and Meynet in Geneva and Professor Thielemann in Basel for very fruitful collaborations and support and for the use of results and figures in this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Peters, G.J., Hirschi, R. (2013). The Evolution of High-Mass Stars. In: Oswalt, T.D., Barstow, M.A. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5615-1_9

Download citation

Publish with us

Policies and ethics