Skip to main content
Log in

Study of Liquid Dimethyl Sulfoxide by Computer Simulation

  • Published:
Molecular Engineering

Abstract

The paper reports Monte Carlo and molecular dynamicsresults for pure liquid dimethyl sulfoxide (DMSO) at298 K and 1 atm. The classical 6–12 Lennard–Jones plusCoulomb pairwise potential was used to calculateintermolecular interaction energy. Potentialparameters for the liquid were optimized in this work.Some thermodynamic and dynamical properties obtained,such as heat of vaporization, density and diffusioncoefficient, are in good agreement with theexperimental values. The present model is comparedwith other models for DMSO reported previously. It isshown to be an improvement over earlier potentials.The structure factors and the radial distributionfunctions (rdf), are compared with experimentalresults for the liquid. The analysis shows that thestructure of DMSO is not completely understood yet anddeserves deeper investigation. The geometry of thedimer that corresponds to the rdf plots obtained, isreported. The results suggest that the dipole momentof this dimer plays an important role in the structureof the liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Jacobs, E. Rosenbaum, and D. Wood: Dimethyl Sulfoxide, Marcel Dekker, New York, 1971.

    Google Scholar 

  2. D. Martin and H. Hanthal: Dimethyl Sulfoxide, Wiley, New York, 1975.

    Google Scholar 

  3. H. C. Allen, D. E. Gragson, and G. L. Richmond: J. Phys. Chem. B 103, 660 (1999).

    Google Scholar 

  4. I. A. Borin and M. S. Skaf: J. Chem. Phys. 110, 6412 (1999).

    Google Scholar 

  5. W. R. Fawcett and A. A. Kloss: J. Chem. Soc., Faraday Trans. 92, 3333 (1996).

    Google Scholar 

  6. R. H. Figueroa, E. Roig, and H. H. Szmant: Spectrochim. Acta 22, 587 (1996).

    Google Scholar 

  7. B. G. Rao and U. C. Singh: J. Am. Chem. Soc. 112, 3803 (1990).

    Google Scholar 

  8. A. Luzar and D. Chandler: J. Chem. Phys. 98, 8160 (1993).

    Google Scholar 

  9. H. Liu, F. Müller-Plathe, and W. F. van Gunsteren: J. Am. Chem. Soc. 117, 4363 (1995).

    Google Scholar 

  10. Y. Zheng and R. L. Ornstein: J. Am. Chem. Soc. 118, 4175 (1996).

    Google Scholar 

  11. I. I. Vaismann and M. L. Berkowitz: J. Am. Chem. Soc. 114, 7889 (1992).

    Google Scholar 

  12. A. Luzar, A. K. Soper, and D. Chandler: J. Chem. Phys. 99, 6836 (1993).

    Google Scholar 

  13. M. S. Skaf: Mol. Phys. 90, 25 (1997).

    Google Scholar 

  14. M. S. Skaf: J. Chem. Phys. 107, 7996 (1997).

    Google Scholar 

  15. L. C. G. Freitas and J. M. M. Cordeiro: J. Mol. Struct. (THEOCHEM) 333, 189 (1995).

    Google Scholar 

  16. J. M. M. Cordeiro: Int. J. Quant. Chem. 65, 709 (1997).

    Google Scholar 

  17. L. C. G. Freitas, J. M. M. Cordeiro, and F. L. L. Garbujo: J. Mol. Liq. 79, 1 (1999).

    Google Scholar 

  18. J. M. M. Cordeiro and L. C. G. Freitas: Z. Naturforsch 54a, 110 (1999).

    Google Scholar 

  19. W. F. van Gusteren and P. K. Weiner (eds.): Computer Simulation of Biomolecular Systems, ESCOM, Leiden, 1989.

    Google Scholar 

  20. A. Warshel: Computer Simulation of Chemical Reactions in Enzymes and Solutions, Wiley, New York, 1991.

    Google Scholar 

  21. M. Allen and D. J. Tildesley: Computer Simulation of Liquids, Oxford University Press, Oxford, 1987.

    Google Scholar 

  22. B. M. Ladanyi and M. S. Skaf: Ann. Rev. Phys. Chem. 44, 335 (1993).

    Google Scholar 

  23. S. Itoh and H. Ohtaki: Z. Naturforsch. 42a, 858 (1987).

    Google Scholar 

  24. N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller: J. Chem. Phys. 21, 1087 (1953).

    Google Scholar 

  25. The calculations were performed with the DIADORIM program, a FORTRAN code developed by L. C. Gomide Freitas, Department of Chemistry, Universidade Federal de São Carlos, São Paulo, Brazil.

  26. P. Belletato, L. C. G. Freitas, E.P. G. Arêas, and P. S. Santos: Phys. Chem. Chem. Phys. 1, 4769 (1999).

    Google Scholar 

  27. M. Neumann: J. Chem. Phys. 82, 5663 (1985); H. E. Alper and R. M. Levy: J. Chem. Phys. 91, 1242 (dy1989).

    Google Scholar 

  28. S. W. De Leeuw, J. M. Perram, and E. R. Smith: Annu. Rev. Phys. Chem. 37, 245 (1986).

    Google Scholar 

  29. G. Ciccotti and J.-P. Ryckaert: Comput. Phys. Rep. 4, 345 (1986).

    Google Scholar 

  30. T. B. Douglas: J. Am. Chem. Soc. 70, 2001 (1948).

    Google Scholar 

  31. D. R. Lide, editor-in-chief: Handbook of Chemistry and Physics, 76rd edn, CRC Press Inc., 1995.

  32. A. K. Soper, personal e-mail communication.

  33. See Refs. [16, 18], and references cited therein.

  34. R. L. Amey: J. Phys. Chem. 72, 3358 (1968).

    Google Scholar 

  35. Y. Marcus: Ion Solvation, Wiley, New York, 1985.

    Google Scholar 

  36. N. Isaacs: Physical Organic Chemistry, Longman Scientific and Technical, Essex, 1995.

    Google Scholar 

  37. L. C. G. Freitas: J. Mol. Struct. (THEOCHEM) 282, 335 (1993).

    Google Scholar 

  38. A. L. L. Sinoti, J. R. S. Politi, and L. C. G. Freitas: J. Mol. Struct. (THEOCHEM) 333, 249 (1996).

    Google Scholar 

  39. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives: J. Am. Chem. Soc. 118, 11225 (1996).

    Google Scholar 

  40. J. M. M. Cordeiro: Z. Naturforsch 54a, 311 (1999).

    Google Scholar 

  41. A. A. Chialvo and P. T. Cummings: J. Chem. Phys. 101, 4466 (1994).

    Google Scholar 

  42. Yu. E. Gorbaty and A. G. Kalinishev: J. Phys. Chem. 99, 5336 (1996).

    Google Scholar 

  43. PC Model, Serena Software, Bloomington, USA.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordeiro, J.M.M. Study of Liquid Dimethyl Sulfoxide by Computer Simulation. Molecular Engineering 8, 303–313 (1999). https://doi.org/10.1023/A:1008359313897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008359313897

Navigation