Skip to main content
Log in

Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformational analysis and NMR spectroscopy – Application to DNS1-c-[d-A2bu2, Trp4,Leu5]- enkephalin and DNS1-c-[d-A2bu2, Trp4, d-Leu5]enkephalin

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A method is proposed to determine the conformational equilibrium of flexible polypeptides in solution, using the data provided by NMR spectroscopy and theoretical conformational calculations. The algorithm consists of the following three steps: (i) search of the conformational space in order to find conformations with reasonably low energy; (ii) simulation of the NOE spectrum and vicinal coupling constants for each of the low energy conformations; and (iii) determining the statistical weights of the conformations, by means of the maximum-entropy method, in order to obtain the best fit of the averaged NOE intensities and coupling constants to the experimental quantities. The method has been applied to two cyclic enkephalin analogs: DNS1-c-[d-A2bu2,Trp4,Leu5]enkephalin (ENKL) and DNS1-c-[d-A2bu2,Trp4,d-Leu5]enkephalin (ENKD). NMR measurements were carried out in deuterated dimethyl sulfoxide. Two techniques were used in conformational search: the electrostatically driven Monte Carlo method (EDMC), which results in extensive search of the conformational space, but gives only energy minima, and the molecular dynamics method (MD), which results in a more accurate, but also more confined search. In the case of EDMC calculations, conformational energy was evaluated using the ECEPP/3 force field augmented with the SRFOPT solvation-shell model, while in the case of MD the AMBER force field was used with explicit solvent molecules. Both searches and subsequent fitting of conformational weights to NMR data resulted in similar conformations of the cyclic part of the peptides studied. For both ENKL and ENKD a common feature of the low-energy solution conformations is the presence of a type II′ or type IV β-turn at residues 3 and 4; the ECEPP/3 force field also gives a remarkable content of type III β-turn. These β-turns are tighter in the case of ENKL, which is reflected in different distributions of the d-A2bu(NγH)...d-A2bu(CO) and d-A2bu(NγH)...Gly3(CO) hydrogen-bonding distances, indicating that the d-A2bu(NγH) amide proton is more shielded from the solvent than in the case of ENKD. This finding conforms with the results of temperature coefficient data of the d-A2bu(NγH) proton. It has also been found that direct (MD) or Boltzmann (EDMC) averages of the observables do not exactly conform with the measured values, even when explicit solvent molecules are included. This suggests that improving force-field parameters might be necessary in order to obtain reliable conformational ensembles in computer simulations, without the aid of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, F.H., Kennard, O. and Taylor, R. (1983) Acc. Chem. Res., 16, 146–153.

    Google Scholar 

  • Bayly, C.I., Cieplak, P., Cornell, W.D. and Kollman, P.A. (1993) J. Phys. Chem., 97, 10269–10280.

    Google Scholar 

  • Baysal, K. and Meirovich, H. (1998) J. Am. Chem. Soc., 120, 800–812.

    Google Scholar 

  • Bhaskaran, R., Chuang, L.-C. and Yu, C. (1992) Biopolymers, 32, 1599–1608.

    Google Scholar 

  • Blackledge, M.J., Brüschweiler, R., Griesinger, C., Schmidt, J.M., Xu, P. and Ernst, R.R. (1993) Biochemistry, 32, 10960–10974.

    Google Scholar 

  • Bodanszky, M. and Bodanszky, A. (1984) The Practice of Peptide Synthesis, Springer, Berlin, pp. 20–25.

    Google Scholar 

  • Bonvin, A.M.J.J., Boelens, R. and Kaptein, R. (1991) J. Biomol. NMR, 1, 305–309.

    Google Scholar 

  • Bonvin, A.M.J.J., Boelens, R. and Kaptein, R. (1994) J. Biomol. NMR, 4, 143–149.

    Google Scholar 

  • Brochon, J.C., Livesey, A.K., Pouget, J. and Valeur, B. (1990) Chem. Phys. Lett., 174, 517–522.

    Google Scholar 

  • Brüschweiler, R., Blackledge, M. and Ernst, R.R. (1991) J. Biomol. NMR, 1, 3–11.

    Google Scholar 

  • Bystrov, V.F. (1976) Progr. NMR Spectrosc., 10, 41–81.

    Google Scholar 

  • Carroll, R.J. and Ruppert, D. (1976) Transformation and Weighting in Regression, Chapman and Hall, New York, NY, pp. 13–18.

    Google Scholar 

  • Daniell, G.J. (1991) In Maximum Entropy in Action(Buck, B. and Macaulay, V.A., Eds), Clarendon Press, Oxford, pp. 1–18.

    Google Scholar 

  • Fields, G.B. and Noble, R.L. (1990) Int. J. Pept. Protein Res., 35, 161–214.

    Google Scholar 

  • Gajewski, J.J., Gilbert, K.E. and McKevey, J. (1990) In Advances in Molecular Modelling. A Research Annual, Vol. 2 (Liotta, D., Ed.), Jai Press Inc., London, p. 65.

    Google Scholar 

  • Gay, D.M. (1983) Assoc. Comput. Math. Trans. Math. Software, 9, 503–524.

    Google Scholar 

  • Gippert, G.P., Wright, P.E. and Case, D.A. (1998) J. Biomol. NMR, 11, 241–263.

    Google Scholar 

  • Gull, S.F. (1988) In Maximum Entropy and Bayesian Methods(Shilling, J., Ed.), Kluwer, Dordrecht, pp. 53–71.

    Google Scholar 

  • Kemmink, J., Van Mierlo, C.P.M., Scheek, R.M. and Creighton, T.E. (1993) J. Mol. Biol., 230, 312–323.

    Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph., 14, 51–55.

    Google Scholar 

  • Lewis, P.N., Momany, F.A. and Scheraga, H.A. (1973) Biochim. Biophys. Acta, 303, 211–229.

    Google Scholar 

  • Lieu, R. and Hicks, R.B. (1994) Astrophys. J., 422, 845–849.

    Google Scholar 

  • Liu, H., Müller-Plathe, F. and van Gunsteren, W. (1995) J. Am. Chem. Soc., 117, 4363–4366.

    Google Scholar 

  • Livesey, A.K. and Brochon, J.C. (1987) Biophys. J., 52, 693–706.

    Google Scholar 

  • Liwo, A., Tempczyk, A., Ołdziej, St., Shenderovich, M.D., Hruby, V.J., Talluri, S., Ciarkowski, J., Kasprzykowski, F., £ankiewicz, L. and Grzonka, Z. (1996) Biopolymers, 38, 157–175.

    Google Scholar 

  • Lyon, R.G., Hollis, J.M. and Dorband, J.E. (1997) Astrophys. J., 478, 658–662.

    Google Scholar 

  • Marquardt, D.W. (1963) J. Soc. Industr. Appl. Math., 11, 431-441.

    Google Scholar 

  • Meadows, R.P., Post, C.B., Luxon, B.A. and Gorenstein, D.G. (1994) MORASS 2.1, Purdue University, W. Lafayette, IN.

  • Meirovitch, H., Meirovitch, E. and Lee, J. (1995) J. Phys. Chem., 99, 4847–4854.

    Google Scholar 

  • Meirovitch, E. and Meirovitch, H. (1996) Biopolymers, 38, 69–88.

    Google Scholar 

  • Mierke, D.F., Lucietto, P. and Goodman, M. (1987) Biopolymers, 26, 1573–1586.

    Google Scholar 

  • Mierke, D.F., Said-Nejad, O.E., Schiller, P.W. and Goodman, M. (1990) Biopolymers, 29, 179–196.

    Google Scholar 

  • Némethy, G., Gibson, K.D., Palmer, K.A., Yoon, C.N., Paterlini, G., Zagari, A., Rumseyn, S. and Scheraga, H.A. (1992) J. Phys. Chem., 96, 6472–6484.

    Google Scholar 

  • Nikiforovich, G.V., Prakash, O., Gehrig, C.A. and Hruby, V.J. (1993) J. Am. Chem. Soc., 115, 3399–3406.

    Google Scholar 

  • Pardi, A., Billeter, M. and Wüthrich, K. (1984) J. Mol. Biol., 180, 741–751.

    Google Scholar 

  • Pearlman, D.A. (1996) J. Biomol. NMR, 8, 49–66.

    Google Scholar 

  • Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham III, T.A., Ferguson, D.M., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A. (1995) AMBER 4.1, University of California, San Francisco, CA.

  • Post, C.B., Meadows, R.P. and Gorenstein, D.G. (1990) J. Am. Chem. Soc., 112, 6796–6803.

    Google Scholar 

  • Reichardt, C. (1988) Solvent and Solvent Effects in Organic Chemistry, VCH Publishers, Weinheim, pp. 365–378.

    Google Scholar 

  • Riddick, J.A., Bunger, W.B. and Sakand, T.K. (1986) Organic Solvents: Physical Properties and Methods of Purification, Wiley, New York, NY.

    Google Scholar 

  • Ripoll, D. and Scheraga, H.A. (1988) Biopolymers, 27, 1283–1303.

    Google Scholar 

  • Ripoll, D. and Scheraga, H.A. (1989) J. Protein Chem., 8, 263–287.

    Google Scholar 

  • Ripoll, D. and Scheraga, H.A. (1990) Biopolymers, 30, 165–176.

    Google Scholar 

  • Ripoll, D.R., Liwo, A. and Scheraga, H.A. (1998) Biopolymers, 46, 117–126.

    Google Scholar 

  • Scheek, R.M., Torda, A.E., Kemmink, J. and Van Gunsteren, W.F. (1991) In Computational Aspects of the Study of Biological Macromolecules by NMR(Hoch, J.C., Poulsen, F.M. and Redfield, C., Eds.), Plenum Press, New York, NY, pp. 209–217.

    Google Scholar 

  • Schmidt, R. and Neubert, K. (1991) Int. J. Pept. Protein Res., 37, 502–507.

    Google Scholar 

  • Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M. and Montgomery, J.A. (1993) J. Comput. Chem., 14, 1347–1363.

    Google Scholar 

  • Shenderovich, M.D., Nikiforovich, G.V., Saulitis, J.B. and Chipens, G.I. (1988) Biophys. Chem., 31, 163–173.

    Google Scholar 

  • Shenderovich, M.D., Kasprzykowski, F., Liwo, A., Sekacis, I., Saulitis, J. and Nikiforovich, G.V. (1991) Int. J. Pept. Protein Res., 38, 528–538.

    Google Scholar 

  • Späth, H. (1980) Cluster Analysis Algorithms, Halsted Press, New York, NY, pp. 170–194.

    Google Scholar 

  • Stewart, J.J.P. (1989) J. Comput. Chem., 10, 209–220.

    Google Scholar 

  • Tarnowska, M., Liwo, A., Shenderovich, M.D., Liepiŋa, I., Golbraikh, A.A., Grzonka, Z. and Tempczyk, A. (1993) J. Comput.-Aided Mol. Design, 7, 699–720.

    Google Scholar 

  • Torda, A.E., Scheek, R.M. and Van Gunsteren, W.F. (1989) Chem. Phys. Lett., 157, 289–294.

    Google Scholar 

  • Torda, A.E., Scheek, R.M. and Van Gunsteren, W.F. (1990) J. Mol. Biol., 214, 223–235.

    Google Scholar 

  • Torda, A.E., Brunne, R.M., Huber, T., Kessler, H. and Van Gunsteren, W.F. (1993) J. Biomol. NMR, 3, 55–66.

    Google Scholar 

  • Vila, J., Williams, R.L., Vásquez, M. and Scheraga, H.A. (1991) Proteins Struct. Funct. Genet., 10, 199–218.

    Google Scholar 

  • Wagner, G. (1990) Progr. NMR Spectrosc., 23, 101–139.

    Google Scholar 

  • Waki, M., Kitajima, Y. and Izumiya, N. (1981) Synthesis, 266–268.

  • Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. (1986) J. Comput. Chem., 7, 230–252.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Yamazaki, T., Said-Nejad, O.E., Schiller, P.W. and Goodman, M. (1991) Biopolymers, 31, 877–898.

    Google Scholar 

  • Yang, J.-X. and Havel, T.F. (1993) J. Biomol. NMR, 3, 355–360.

    Google Scholar 

  • Yu, C., Yang, T.-H., Yeh, C.-J. and Chuang, L.-C. (1992) Can. J. Chem., 70, 1950–1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groth, M., Malicka, J., Czaplewski, C. et al. Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformational analysis and NMR spectroscopy – Application to DNS1-c-[d-A2bu2, Trp4,Leu5]- enkephalin and DNS1-c-[d-A2bu2, Trp4, d-Leu5]enkephalin. J Biomol NMR 15, 315–330 (1999). https://doi.org/10.1023/A:1008349424452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008349424452

Navigation